Mister Exam

Other calculators

Derivative of log(x-4,8)^5

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   5          
log (x - 24/5)
$$\log{\left(x - \frac{24}{5} \right)}^{5}$$
log(x - 24/5)^5
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     4          
5*log (x - 24/5)
----------------
    x - 24/5    
$$\frac{5 \log{\left(x - \frac{24}{5} \right)}^{4}}{x - \frac{24}{5}}$$
The second derivative [src]
       3                                
125*log (-24/5 + x)*(4 - log(-24/5 + x))
----------------------------------------
                         2              
              (-24 + 5*x)               
$$\frac{125 \left(4 - \log{\left(x - \frac{24}{5} \right)}\right) \log{\left(x - \frac{24}{5} \right)}^{3}}{\left(5 x - 24\right)^{2}}$$
The third derivative [src]
        2            /       2                              \
1250*log (-24/5 + x)*\6 + log (-24/5 + x) - 6*log(-24/5 + x)/
-------------------------------------------------------------
                                    3                        
                         (-24 + 5*x)                         
$$\frac{1250 \left(\log{\left(x - \frac{24}{5} \right)}^{2} - 6 \log{\left(x - \frac{24}{5} \right)} + 6\right) \log{\left(x - \frac{24}{5} \right)}^{2}}{\left(5 x - 24\right)^{3}}$$