Mister Exam

Other calculators


log(x)/x^2

Derivative of log(x)/x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(x)
------
   2  
  x   
log(x)x2\frac{\log{\left(x \right)}}{x^{2}}
log(x)/x^2
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=log(x)f{\left(x \right)} = \log{\left(x \right)} and g(x)=x2g{\left(x \right)} = x^{2}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Apply the power rule: x2x^{2} goes to 2x2 x

    Now plug in to the quotient rule:

    2xlog(x)+xx4\frac{- 2 x \log{\left(x \right)} + x}{x^{4}}

  2. Now simplify:

    12log(x)x3\frac{1 - 2 \log{\left(x \right)}}{x^{3}}


The answer is:

12log(x)x3\frac{1 - 2 \log{\left(x \right)}}{x^{3}}

The graph
02468-8-6-4-2-1010-500010000
The first derivative [src]
 1     2*log(x)
---- - --------
   2       3   
x*x       x    
1xx22log(x)x3\frac{1}{x x^{2}} - \frac{2 \log{\left(x \right)}}{x^{3}}
The second derivative [src]
-5 + 6*log(x)
-------------
       4     
      x      
6log(x)5x4\frac{6 \log{\left(x \right)} - 5}{x^{4}}
The third derivative [src]
2*(13 - 12*log(x))
------------------
         5        
        x         
2(1312log(x))x5\frac{2 \left(13 - 12 \log{\left(x \right)}\right)}{x^{5}}
The graph
Derivative of log(x)/x^2