Mister Exam

Other calculators

Derivative of (log(x)/log(2))-3(log(x)/log(3))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(x)     log(x)
------ - 3*------
log(2)     log(3)
3log(x)log(3)+log(x)log(2)- 3 \frac{\log{\left(x \right)}}{\log{\left(3 \right)}} + \frac{\log{\left(x \right)}}{\log{\left(2 \right)}}
log(x)/log(2) - 3*log(x)/log(3)
Detail solution
  1. Differentiate 3log(x)log(3)+log(x)log(2)- 3 \frac{\log{\left(x \right)}}{\log{\left(3 \right)}} + \frac{\log{\left(x \right)}}{\log{\left(2 \right)}} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

      So, the result is: 1xlog(2)\frac{1}{x \log{\left(2 \right)}}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

        So, the result is: 1xlog(3)\frac{1}{x \log{\left(3 \right)}}

      So, the result is: 3xlog(3)- \frac{3}{x \log{\left(3 \right)}}

    The result is: 3xlog(3)+1xlog(2)- \frac{3}{x \log{\left(3 \right)}} + \frac{1}{x \log{\left(2 \right)}}

  2. Now simplify:

    3log(3)+1log(2)x\frac{- \frac{3}{\log{\left(3 \right)}} + \frac{1}{\log{\left(2 \right)}}}{x}


The answer is:

3log(3)+1log(2)x\frac{- \frac{3}{\log{\left(3 \right)}} + \frac{1}{\log{\left(2 \right)}}}{x}

The graph
02468-8-6-4-2-1010-2525
The first derivative [src]
   1          3    
-------- - --------
x*log(2)   x*log(3)
3xlog(3)+1xlog(2)- \frac{3}{x \log{\left(3 \right)}} + \frac{1}{x \log{\left(2 \right)}}
The second derivative [src]
    1        3   
- ------ + ------
  log(2)   log(3)
-----------------
         2       
        x        
1log(2)+3log(3)x2\frac{- \frac{1}{\log{\left(2 \right)}} + \frac{3}{\log{\left(3 \right)}}}{x^{2}}
The third derivative [src]
  /  1        3   \
2*|------ - ------|
  \log(2)   log(3)/
-------------------
          3        
         x         
2(3log(3)+1log(2))x3\frac{2 \left(- \frac{3}{\log{\left(3 \right)}} + \frac{1}{\log{\left(2 \right)}}\right)}{x^{3}}