The second derivative
[src]
/ 2 2*acot(x) x*log(-1 + 2*x)\
2*|- ------------------- - ----------- + ---------------|
| / 2\ 2 2 |
| \1 + x /*(-1 + 2*x) (-1 + 2*x) / 2\ |
\ \1 + x / /
$$2 \left(\frac{x \log{\left(2 x - 1 \right)}}{\left(x^{2} + 1\right)^{2}} - \frac{2}{\left(2 x - 1\right) \left(x^{2} + 1\right)} - \frac{2 \operatorname{acot}{\left(x \right)}}{\left(2 x - 1\right)^{2}}\right)$$
The third derivative
[src]
/ / 2 \ \
| | 4*x | |
| |-1 + ------|*log(-1 + 2*x) |
| | 2| |
| 6 8*acot(x) \ 1 + x / 6*x |
2*|-------------------- + ----------- - --------------------------- + --------------------|
|/ 2\ 2 3 2 2 |
|\1 + x /*(-1 + 2*x) (-1 + 2*x) / 2\ / 2\ |
\ \1 + x / \1 + x / *(-1 + 2*x)/
$$2 \left(\frac{6 x}{\left(2 x - 1\right) \left(x^{2} + 1\right)^{2}} - \frac{\left(\frac{4 x^{2}}{x^{2} + 1} - 1\right) \log{\left(2 x - 1 \right)}}{\left(x^{2} + 1\right)^{2}} + \frac{6}{\left(2 x - 1\right)^{2} \left(x^{2} + 1\right)} + \frac{8 \operatorname{acot}{\left(x \right)}}{\left(2 x - 1\right)^{3}}\right)$$