Detail solution
-
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
The first derivative
[src]
x / x \
log (x + 1)*|------------------ + log(log(x + 1))|
\(x + 1)*log(x + 1) /
$$\left(\frac{x}{\left(x + 1\right) \log{\left(x + 1 \right)}} + \log{\left(\log{\left(x + 1 \right)} \right)}\right) \log{\left(x + 1 \right)}^{x}$$
The second derivative
[src]
/ x x \
| 2 -2 + ----- + ------------------|
x |/ x \ 1 + x (1 + x)*log(1 + x)|
log (1 + x)*||------------------ + log(log(1 + x))| - -------------------------------|
\\(1 + x)*log(1 + x) / (1 + x)*log(1 + x) /
$$\left(\left(\frac{x}{\left(x + 1\right) \log{\left(x + 1 \right)}} + \log{\left(\log{\left(x + 1 \right)} \right)}\right)^{2} - \frac{\frac{x}{x + 1} + \frac{x}{\left(x + 1\right) \log{\left(x + 1 \right)}} - 2}{\left(x + 1\right) \log{\left(x + 1 \right)}}\right) \log{\left(x + 1 \right)}^{x}$$
The third derivative
[src]
/ 3 2*x 2*x 3*x \
| -3 - ---------- + ----- + ------------------- + ------------------ / x \ / x x \|
| 3 log(1 + x) 1 + x 2 (1 + x)*log(1 + x) 3*|------------------ + log(log(1 + x))|*|-2 + ----- + ------------------||
x |/ x \ (1 + x)*log (1 + x) \(1 + x)*log(1 + x) / \ 1 + x (1 + x)*log(1 + x)/|
log (1 + x)*||------------------ + log(log(1 + x))| + ------------------------------------------------------------------ - --------------------------------------------------------------------------|
|\(1 + x)*log(1 + x) / 2 (1 + x)*log(1 + x) |
\ (1 + x) *log(1 + x) /
$$\left(\left(\frac{x}{\left(x + 1\right) \log{\left(x + 1 \right)}} + \log{\left(\log{\left(x + 1 \right)} \right)}\right)^{3} - \frac{3 \left(\frac{x}{\left(x + 1\right) \log{\left(x + 1 \right)}} + \log{\left(\log{\left(x + 1 \right)} \right)}\right) \left(\frac{x}{x + 1} + \frac{x}{\left(x + 1\right) \log{\left(x + 1 \right)}} - 2\right)}{\left(x + 1\right) \log{\left(x + 1 \right)}} + \frac{\frac{2 x}{x + 1} + \frac{3 x}{\left(x + 1\right) \log{\left(x + 1 \right)}} + \frac{2 x}{\left(x + 1\right) \log{\left(x + 1 \right)}^{2}} - 3 - \frac{3}{\log{\left(x + 1 \right)}}}{\left(x + 1\right)^{2} \log{\left(x + 1 \right)}}\right) \log{\left(x + 1 \right)}^{x}$$