Mister Exam

Other calculators

Derivative of log^x*(x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   x       
log (x + 1)
$$\log{\left(x + 1 \right)}^{x}$$
log(x + 1)^x
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The graph
The first derivative [src]
   x        /        x                           \
log (x + 1)*|------------------ + log(log(x + 1))|
            \(x + 1)*log(x + 1)                  /
$$\left(\frac{x}{\left(x + 1\right) \log{\left(x + 1 \right)}} + \log{\left(\log{\left(x + 1 \right)} \right)}\right) \log{\left(x + 1 \right)}^{x}$$
The second derivative [src]
            /                                                 x             x         \
            |                                      2   -2 + ----- + ------------------|
   x        |/        x                           \         1 + x   (1 + x)*log(1 + x)|
log (1 + x)*||------------------ + log(log(1 + x))|  - -------------------------------|
            \\(1 + x)*log(1 + x)                  /           (1 + x)*log(1 + x)      /
$$\left(\left(\frac{x}{\left(x + 1\right) \log{\left(x + 1 \right)}} + \log{\left(\log{\left(x + 1 \right)} \right)}\right)^{2} - \frac{\frac{x}{x + 1} + \frac{x}{\left(x + 1\right) \log{\left(x + 1 \right)}} - 2}{\left(x + 1\right) \log{\left(x + 1 \right)}}\right) \log{\left(x + 1 \right)}^{x}$$
The third derivative [src]
            /                                                   3         2*x            2*x                  3*x                                                                                     \
            |                                          -3 - ---------- + ----- + ------------------- + ------------------     /        x                           \ /       x             x         \|
            |                                      3        log(1 + x)   1 + x              2          (1 + x)*log(1 + x)   3*|------------------ + log(log(1 + x))|*|-2 + ----- + ------------------||
   x        |/        x                           \                              (1 + x)*log (1 + x)                          \(1 + x)*log(1 + x)                  / \     1 + x   (1 + x)*log(1 + x)/|
log (1 + x)*||------------------ + log(log(1 + x))|  + ------------------------------------------------------------------ - --------------------------------------------------------------------------|
            |\(1 + x)*log(1 + x)                  /                                  2                                                                  (1 + x)*log(1 + x)                            |
            \                                                                 (1 + x) *log(1 + x)                                                                                                     /
$$\left(\left(\frac{x}{\left(x + 1\right) \log{\left(x + 1 \right)}} + \log{\left(\log{\left(x + 1 \right)} \right)}\right)^{3} - \frac{3 \left(\frac{x}{\left(x + 1\right) \log{\left(x + 1 \right)}} + \log{\left(\log{\left(x + 1 \right)} \right)}\right) \left(\frac{x}{x + 1} + \frac{x}{\left(x + 1\right) \log{\left(x + 1 \right)}} - 2\right)}{\left(x + 1\right) \log{\left(x + 1 \right)}} + \frac{\frac{2 x}{x + 1} + \frac{3 x}{\left(x + 1\right) \log{\left(x + 1 \right)}} + \frac{2 x}{\left(x + 1\right) \log{\left(x + 1 \right)}^{2}} - 3 - \frac{3}{\log{\left(x + 1 \right)}}}{\left(x + 1\right)^{2} \log{\left(x + 1 \right)}}\right) \log{\left(x + 1 \right)}^{x}$$