/ / 2\\ log\tan\x //
log(tan(x^2))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Apply the power rule: goes to
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Apply the power rule: goes to
The result of the chain rule is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
/ 2/ 2\\ 2*x*\1 + tan \x // ------------------ / 2\ tan\x /
/ 2 / 2/ 2\\\ / 2/ 2\\ | 1 2 2*x *\1 + tan \x //| 2*\1 + tan \x //*|------- + 4*x - -------------------| | / 2\ 2/ 2\ | \tan\x / tan \x / /
/ 2\ | / 2/ 2\\ 2 / 2/ 2\\ 2 / 2/ 2\\ | / 2/ 2\\ | 3*\1 + tan \x // 2 / 2\ 8*x *\1 + tan \x // 4*x *\1 + tan \x // | 4*x*\1 + tan \x //*|6 - ---------------- + 8*x *tan\x / - ------------------- + --------------------| | 2/ 2\ / 2\ 3/ 2\ | \ tan \x / tan\x / tan \x / /