Mister Exam

Other calculators

Derivative of log(tan((2*x+1)/4))^(2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/   /2*x + 1\\
log |tan|-------||
    \   \   4   //
$$\log{\left(\tan{\left(\frac{2 x + 1}{4} \right)} \right)}^{2}$$
log(tan((2*x + 1)/4))^2
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Differentiate term by term:

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: goes to

                So, the result is:

              2. The derivative of the constant is zero.

              The result is:

            So, the result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Differentiate term by term:

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: goes to

                So, the result is:

              2. The derivative of the constant is zero.

              The result is:

            So, the result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
  /       2/2*x + 1\\                  
  |    tan |-------||                  
  |1       \   4   /|    /   /2*x + 1\\
2*|- + -------------|*log|tan|-------||
  \2         2      /    \   \   4   //
---------------------------------------
                 /2*x + 1\             
              tan|-------|             
                 \   4   /             
$$\frac{2 \left(\frac{\tan^{2}{\left(\frac{2 x + 1}{4} \right)}}{2} + \frac{1}{2}\right) \log{\left(\tan{\left(\frac{2 x + 1}{4} \right)} \right)}}{\tan{\left(\frac{2 x + 1}{4} \right)}}$$
The second derivative [src]
/       2/1 + 2*x\\ /                             2/1 + 2*x\   /       2/1 + 2*x\\    /   /1 + 2*x\\\
|    tan |-------|| |                      1 + tan |-------|   |1 + tan |-------||*log|tan|-------|||
|1       \   4   /| |     /   /1 + 2*x\\           \   4   /   \        \   4   //    \   \   4   //|
|- + -------------|*|2*log|tan|-------|| + ----------------- - -------------------------------------|
\2         2      / |     \   \   4   //        2/1 + 2*x\                    2/1 + 2*x\            |
                    |                        tan |-------|                 tan |-------|            |
                    \                            \   4   /                     \   4   /            /
$$\left(\frac{\tan^{2}{\left(\frac{2 x + 1}{4} \right)}}{2} + \frac{1}{2}\right) \left(- \frac{\left(\tan^{2}{\left(\frac{2 x + 1}{4} \right)} + 1\right) \log{\left(\tan{\left(\frac{2 x + 1}{4} \right)} \right)}}{\tan^{2}{\left(\frac{2 x + 1}{4} \right)}} + \frac{\tan^{2}{\left(\frac{2 x + 1}{4} \right)} + 1}{\tan^{2}{\left(\frac{2 x + 1}{4} \right)}} + 2 \log{\left(\tan{\left(\frac{2 x + 1}{4} \right)} \right)}\right)$$
The third derivative [src]
                    /                       2                                                                                                                             2                  \
/       2/1 + 2*x\\ |    /       2/1 + 2*x\\                                         /       2/1 + 2*x\\     /       2/1 + 2*x\\    /   /1 + 2*x\\     /       2/1 + 2*x\\     /   /1 + 2*x\\|
|    tan |-------|| |  3*|1 + tan |-------||                                       6*|1 + tan |-------||   4*|1 + tan |-------||*log|tan|-------||   2*|1 + tan |-------|| *log|tan|-------|||
|1       \   4   /| |    \        \   4   //         /   /1 + 2*x\\    /1 + 2*x\     \        \   4   //     \        \   4   //    \   \   4   //     \        \   4   //     \   \   4   //|
|- + -------------|*|- ---------------------- + 4*log|tan|-------||*tan|-------| + --------------------- - --------------------------------------- + ----------------------------------------|
\4         4      / |         3/1 + 2*x\             \   \   4   //    \   4   /           /1 + 2*x\                        /1 + 2*x\                                3/1 + 2*x\              |
                    |      tan |-------|                                                tan|-------|                     tan|-------|                             tan |-------|              |
                    \          \   4   /                                                   \   4   /                        \   4   /                                 \   4   /              /
$$\left(\frac{\tan^{2}{\left(\frac{2 x + 1}{4} \right)}}{4} + \frac{1}{4}\right) \left(\frac{2 \left(\tan^{2}{\left(\frac{2 x + 1}{4} \right)} + 1\right)^{2} \log{\left(\tan{\left(\frac{2 x + 1}{4} \right)} \right)}}{\tan^{3}{\left(\frac{2 x + 1}{4} \right)}} - \frac{3 \left(\tan^{2}{\left(\frac{2 x + 1}{4} \right)} + 1\right)^{2}}{\tan^{3}{\left(\frac{2 x + 1}{4} \right)}} - \frac{4 \left(\tan^{2}{\left(\frac{2 x + 1}{4} \right)} + 1\right) \log{\left(\tan{\left(\frac{2 x + 1}{4} \right)} \right)}}{\tan{\left(\frac{2 x + 1}{4} \right)}} + \frac{6 \left(\tan^{2}{\left(\frac{2 x + 1}{4} \right)} + 1\right)}{\tan{\left(\frac{2 x + 1}{4} \right)}} + 4 \log{\left(\tan{\left(\frac{2 x + 1}{4} \right)} \right)} \tan{\left(\frac{2 x + 1}{4} \right)}\right)$$