Mister Exam

Derivative of log(tan4x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(tan(4*x))
log(tan(4x))\log{\left(\tan{\left(4 x \right)} \right)}
d                
--(log(tan(4*x)))
dx               
ddxlog(tan(4x))\frac{d}{d x} \log{\left(\tan{\left(4 x \right)} \right)}
Detail solution
  1. Let u=tan(4x)u = \tan{\left(4 x \right)}.

  2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

  3. Then, apply the chain rule. Multiply by ddxtan(4x)\frac{d}{d x} \tan{\left(4 x \right)}:

    1. Rewrite the function to be differentiated:

      tan(4x)=sin(4x)cos(4x)\tan{\left(4 x \right)} = \frac{\sin{\left(4 x \right)}}{\cos{\left(4 x \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(4x)f{\left(x \right)} = \sin{\left(4 x \right)} and g(x)=cos(4x)g{\left(x \right)} = \cos{\left(4 x \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=4xu = 4 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 44

        The result of the chain rule is:

        4cos(4x)4 \cos{\left(4 x \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=4xu = 4 x.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 44

        The result of the chain rule is:

        4sin(4x)- 4 \sin{\left(4 x \right)}

      Now plug in to the quotient rule:

      4sin2(4x)+4cos2(4x)cos2(4x)\frac{4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}}{\cos^{2}{\left(4 x \right)}}

    The result of the chain rule is:

    4sin2(4x)+4cos2(4x)cos2(4x)tan(4x)\frac{4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}}{\cos^{2}{\left(4 x \right)} \tan{\left(4 x \right)}}

  4. Now simplify:

    4cos2(4x)tan(4x)\frac{4}{\cos^{2}{\left(4 x \right)} \tan{\left(4 x \right)}}


The answer is:

4cos2(4x)tan(4x)\frac{4}{\cos^{2}{\left(4 x \right)} \tan{\left(4 x \right)}}

The graph
02468-8-6-4-2-1010-20002000
The first derivative [src]
         2     
4 + 4*tan (4*x)
---------------
    tan(4*x)   
4tan2(4x)+4tan(4x)\frac{4 \tan^{2}{\left(4 x \right)} + 4}{\tan{\left(4 x \right)}}
The second derivative [src]
   /                                 2\
   |                  /       2     \ |
   |         2        \1 + tan (4*x)/ |
16*|2 + 2*tan (4*x) - ----------------|
   |                        2         |
   \                     tan (4*x)    /
16((tan2(4x)+1)2tan2(4x)+2tan2(4x)+2)16 \left(- \frac{\left(\tan^{2}{\left(4 x \right)} + 1\right)^{2}}{\tan^{2}{\left(4 x \right)}} + 2 \tan^{2}{\left(4 x \right)} + 2\right)
The third derivative [src]
                    /                            2                    \
                    |             /       2     \      /       2     \|
    /       2     \ |             \1 + tan (4*x)/    2*\1 + tan (4*x)/|
128*\1 + tan (4*x)/*|2*tan(4*x) + ---------------- - -----------------|
                    |                   3                 tan(4*x)    |
                    \                tan (4*x)                        /
128(tan2(4x)+1)((tan2(4x)+1)2tan3(4x)2(tan2(4x)+1)tan(4x)+2tan(4x))128 \left(\tan^{2}{\left(4 x \right)} + 1\right) \left(\frac{\left(\tan^{2}{\left(4 x \right)} + 1\right)^{2}}{\tan^{3}{\left(4 x \right)}} - \frac{2 \left(\tan^{2}{\left(4 x \right)} + 1\right)}{\tan{\left(4 x \right)}} + 2 \tan{\left(4 x \right)}\right)
The graph
Derivative of log(tan4x)