Mister Exam

Other calculators

Derivative of log(sqrt((1-sin(x))/(1+sin(x))))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /    ____________\
   |   / 1 - sin(x) |
log|  /  ---------- |
   \\/   1 + sin(x) /
$$\log{\left(\sqrt{\frac{1 - \sin{\left(x \right)}}{\sin{\left(x \right)} + 1}} \right)}$$
log(sqrt((1 - sin(x))/(1 + sin(x))))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. The derivative of sine is cosine:

            So, the result is:

          The result is:

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of sine is cosine:

          The result is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
             /      cos(x)       (1 - sin(x))*cos(x)\
(1 + sin(x))*|- -------------- - -------------------|
             |  2*(1 + sin(x))                   2  |
             \                     2*(1 + sin(x))   /
-----------------------------------------------------
                      1 - sin(x)                     
$$\frac{\left(- \frac{\left(1 - \sin{\left(x \right)}\right) \cos{\left(x \right)}}{2 \left(\sin{\left(x \right)} + 1\right)^{2}} - \frac{\cos{\left(x \right)}}{2 \left(\sin{\left(x \right)} + 1\right)}\right) \left(\sin{\left(x \right)} + 1\right)}{1 - \sin{\left(x \right)}}$$
The second derivative [src]
                                                                          2    /     -1 + sin(x)\      2    /     -1 + sin(x)\
               2           2                                           cos (x)*|-1 + -----------|   cos (x)*|-1 + -----------|
  sin(x)    cos (x)     cos (x)*(-1 + sin(x))   (-1 + sin(x))*sin(x)           \      1 + sin(x)/           \      1 + sin(x)/
- ------ - ---------- + --------------------- + -------------------- + -------------------------- - --------------------------
    2      1 + sin(x)                   2          2*(1 + sin(x))           2*(-1 + sin(x))               2*(1 + sin(x))      
                            (1 + sin(x))                                                                                      
------------------------------------------------------------------------------------------------------------------------------
                                                         -1 + sin(x)                                                          
$$\frac{- \frac{\left(\frac{\sin{\left(x \right)} - 1}{\sin{\left(x \right)} + 1} - 1\right) \cos^{2}{\left(x \right)}}{2 \left(\sin{\left(x \right)} + 1\right)} + \frac{\left(\frac{\sin{\left(x \right)} - 1}{\sin{\left(x \right)} + 1} - 1\right) \cos^{2}{\left(x \right)}}{2 \left(\sin{\left(x \right)} - 1\right)} + \frac{\left(\sin{\left(x \right)} - 1\right) \sin{\left(x \right)}}{2 \left(\sin{\left(x \right)} + 1\right)} + \frac{\left(\sin{\left(x \right)} - 1\right) \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} + 1\right)^{2}} - \frac{\sin{\left(x \right)}}{2} - \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)} + 1}}{\sin{\left(x \right)} - 1}$$
The third derivative [src]
/                     2                                   2                                                    2                                   2                                                                                                                                                                                                                   \       
|                2*cos (x)    (-1 + sin(x))*sin(x)   2*cos (x)*(-1 + sin(x))                              2*cos (x)    (-1 + sin(x))*sin(x)   2*cos (x)*(-1 + sin(x))                                                                                                                                                                                                  |       
|      -sin(x) - ---------- + -------------------- + -----------------------                    -sin(x) - ---------- + -------------------- + -----------------------                                /     -1 + sin(x)\             2    /     -1 + sin(x)\                                                      /     -1 + sin(x)\             2    /     -1 + sin(x)\|       
|                1 + sin(x)        1 + sin(x)                         2                                   1 + sin(x)        1 + sin(x)                         2                            2        |-1 + -----------|*sin(x)   cos (x)*|-1 + -----------|        2                                             |-1 + -----------|*sin(x)   cos (x)*|-1 + -----------||       
|  1                                                      (1 + sin(x))          -1 + sin(x)                                                        (1 + sin(x))          3*sin(x)      3*cos (x)     \      1 + sin(x)/                  \      1 + sin(x)/   3*cos (x)*(-1 + sin(x))   3*(-1 + sin(x))*sin(x)   \      1 + sin(x)/                  \      1 + sin(x)/|       
|- - + --------------------------------------------------------------------- + -------------- - --------------------------------------------------------------------- + ---------- + ------------- + ------------------------- - -------------------------- - ----------------------- - ---------------------- - ------------------------- + --------------------------|*cos(x)
|  2                                 1 + sin(x)                                2*(1 + sin(x))                                -1 + sin(x)                                1 + sin(x)               2         2*(1 + sin(x))                           2                          3                        2             2*(-1 + sin(x))        (1 + sin(x))*(-1 + sin(x))|       
\                                                                                                                                                                                    (1 + sin(x))                                      (-1 + sin(x))               (1 + sin(x))             (1 + sin(x))                                                               /       
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                                                                  -1 + sin(x)                                                                                                                                                                                  
$$\frac{\left(\frac{\left(\frac{\sin{\left(x \right)} - 1}{\sin{\left(x \right)} + 1} - 1\right) \sin{\left(x \right)}}{2 \left(\sin{\left(x \right)} + 1\right)} - \frac{\left(\frac{\sin{\left(x \right)} - 1}{\sin{\left(x \right)} + 1} - 1\right) \sin{\left(x \right)}}{2 \left(\sin{\left(x \right)} - 1\right)} + \frac{\left(\frac{\sin{\left(x \right)} - 1}{\sin{\left(x \right)} + 1} - 1\right) \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right) \left(\sin{\left(x \right)} + 1\right)} - \frac{\left(\frac{\sin{\left(x \right)} - 1}{\sin{\left(x \right)} + 1} - 1\right) \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right)^{2}} + \frac{\sin{\left(x \right)} - 1}{2 \left(\sin{\left(x \right)} + 1\right)} - \frac{3 \left(\sin{\left(x \right)} - 1\right) \sin{\left(x \right)}}{\left(\sin{\left(x \right)} + 1\right)^{2}} - \frac{3 \left(\sin{\left(x \right)} - 1\right) \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} + 1\right)^{3}} - \frac{1}{2} + \frac{\frac{\left(\sin{\left(x \right)} - 1\right) \sin{\left(x \right)}}{\sin{\left(x \right)} + 1} + \frac{2 \left(\sin{\left(x \right)} - 1\right) \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} + 1\right)^{2}} - \sin{\left(x \right)} - \frac{2 \cos^{2}{\left(x \right)}}{\sin{\left(x \right)} + 1}}{\sin{\left(x \right)} + 1} + \frac{3 \sin{\left(x \right)}}{\sin{\left(x \right)} + 1} + \frac{3 \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} + 1\right)^{2}} - \frac{\frac{\left(\sin{\left(x \right)} - 1\right) \sin{\left(x \right)}}{\sin{\left(x \right)} + 1} + \frac{2 \left(\sin{\left(x \right)} - 1\right) \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} + 1\right)^{2}} - \sin{\left(x \right)} - \frac{2 \cos^{2}{\left(x \right)}}{\sin{\left(x \right)} + 1}}{\sin{\left(x \right)} - 1}\right) \cos{\left(x \right)}}{\sin{\left(x \right)} - 1}$$