/ ____________\ | / 1 - sin(x) | log| / ---------- | \\/ 1 + sin(x) /
log(sqrt((1 - sin(x))/(1 + sin(x))))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of sine is cosine:
So, the result is:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of sine is cosine:
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
/ cos(x) (1 - sin(x))*cos(x)\ (1 + sin(x))*|- -------------- - -------------------| | 2*(1 + sin(x)) 2 | \ 2*(1 + sin(x)) / ----------------------------------------------------- 1 - sin(x)
2 / -1 + sin(x)\ 2 / -1 + sin(x)\ 2 2 cos (x)*|-1 + -----------| cos (x)*|-1 + -----------| sin(x) cos (x) cos (x)*(-1 + sin(x)) (-1 + sin(x))*sin(x) \ 1 + sin(x)/ \ 1 + sin(x)/ - ------ - ---------- + --------------------- + -------------------- + -------------------------- - -------------------------- 2 1 + sin(x) 2 2*(1 + sin(x)) 2*(-1 + sin(x)) 2*(1 + sin(x)) (1 + sin(x)) ------------------------------------------------------------------------------------------------------------------------------ -1 + sin(x)
/ 2 2 2 2 \ | 2*cos (x) (-1 + sin(x))*sin(x) 2*cos (x)*(-1 + sin(x)) 2*cos (x) (-1 + sin(x))*sin(x) 2*cos (x)*(-1 + sin(x)) | | -sin(x) - ---------- + -------------------- + ----------------------- -sin(x) - ---------- + -------------------- + ----------------------- / -1 + sin(x)\ 2 / -1 + sin(x)\ / -1 + sin(x)\ 2 / -1 + sin(x)\| | 1 + sin(x) 1 + sin(x) 2 1 + sin(x) 1 + sin(x) 2 2 |-1 + -----------|*sin(x) cos (x)*|-1 + -----------| 2 |-1 + -----------|*sin(x) cos (x)*|-1 + -----------|| | 1 (1 + sin(x)) -1 + sin(x) (1 + sin(x)) 3*sin(x) 3*cos (x) \ 1 + sin(x)/ \ 1 + sin(x)/ 3*cos (x)*(-1 + sin(x)) 3*(-1 + sin(x))*sin(x) \ 1 + sin(x)/ \ 1 + sin(x)/| |- - + --------------------------------------------------------------------- + -------------- - --------------------------------------------------------------------- + ---------- + ------------- + ------------------------- - -------------------------- - ----------------------- - ---------------------- - ------------------------- + --------------------------|*cos(x) | 2 1 + sin(x) 2*(1 + sin(x)) -1 + sin(x) 1 + sin(x) 2 2*(1 + sin(x)) 2 3 2 2*(-1 + sin(x)) (1 + sin(x))*(-1 + sin(x))| \ (1 + sin(x)) (-1 + sin(x)) (1 + sin(x)) (1 + sin(x)) / ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- -1 + sin(x)