Mister Exam

Other calculators

Derivative of log(sin(x^3),2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   / 3\   \
log\sin\x /, 2/
$$\log{\left(\sin{\left(x^{3} \right)} \right)}$$
log(sin(x^3), 2)
The graph
The first derivative [src]
   2    / 3\
3*x *cos\x /
------------
     / 3\   
  sin\x /   
$$\frac{3 x^{2} \cos{\left(x^{3} \right)}}{\sin{\left(x^{3} \right)}}$$
The second derivative [src]
    /              / 3\      3    2/ 3\\
    |     3   2*cos\x /   3*x *cos \x /|
3*x*|- 3*x  + --------- - -------------|
    |             / 3\          2/ 3\  |
    \          sin\x /       sin \x /  /
$$3 x \left(- 3 x^{3} - \frac{3 x^{3} \cos^{2}{\left(x^{3} \right)}}{\sin^{2}{\left(x^{3} \right)}} + \frac{2 \cos{\left(x^{3} \right)}}{\sin{\left(x^{3} \right)}}\right)$$
The third derivative [src]
  /            / 3\      3    2/ 3\      6    3/ 3\      6    / 3\\
  |     3   cos\x /   9*x *cos \x /   9*x *cos \x /   9*x *cos\x /|
6*|- 9*x  + ------- - ------------- + ------------- + ------------|
  |            / 3\         2/ 3\           3/ 3\          / 3\   |
  \         sin\x /      sin \x /        sin \x /       sin\x /   /
$$6 \left(\frac{9 x^{6} \cos{\left(x^{3} \right)}}{\sin{\left(x^{3} \right)}} + \frac{9 x^{6} \cos^{3}{\left(x^{3} \right)}}{\sin^{3}{\left(x^{3} \right)}} - 9 x^{3} - \frac{9 x^{3} \cos^{2}{\left(x^{3} \right)}}{\sin^{2}{\left(x^{3} \right)}} + \frac{\cos{\left(x^{3} \right)}}{\sin{\left(x^{3} \right)}}\right)$$