Mister Exam

Other calculators

Derivative of log((1+2*x)/(1-2*x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /1 + 2*x\
log|-------|
   \1 - 2*x/
$$\log{\left(\frac{2 x + 1}{1 - 2 x} \right)}$$
log((1 + 2*x)/(1 - 2*x))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
          /   2      2*(1 + 2*x)\
(1 - 2*x)*|------- + -----------|
          |1 - 2*x             2|
          \           (1 - 2*x) /
---------------------------------
             1 + 2*x             
$$\frac{\left(1 - 2 x\right) \left(\frac{2}{1 - 2 x} + \frac{2 \left(2 x + 1\right)}{\left(1 - 2 x\right)^{2}}\right)}{2 x + 1}$$
The second derivative [src]
  /    1 + 2*x \ /     1         1    \
4*|1 - --------|*|- ------- - --------|
  \    -1 + 2*x/ \  1 + 2*x   -1 + 2*x/
---------------------------------------
                1 + 2*x                
$$\frac{4 \left(1 - \frac{2 x + 1}{2 x - 1}\right) \left(- \frac{1}{2 x + 1} - \frac{1}{2 x - 1}\right)}{2 x + 1}$$
3-я производная [src]
   /    1 + 2*x \ /    1             1                 1          \
16*|1 - --------|*|---------- + ----------- + --------------------|
   \    -1 + 2*x/ |         2             2   (1 + 2*x)*(-1 + 2*x)|
                  \(1 + 2*x)    (-1 + 2*x)                        /
-------------------------------------------------------------------
                              1 + 2*x                              
$$\frac{16 \left(1 - \frac{2 x + 1}{2 x - 1}\right) \left(\frac{1}{\left(2 x + 1\right)^{2}} + \frac{1}{\left(2 x - 1\right) \left(2 x + 1\right)} + \frac{1}{\left(2 x - 1\right)^{2}}\right)}{2 x + 1}$$
The third derivative [src]
   /    1 + 2*x \ /    1             1                 1          \
16*|1 - --------|*|---------- + ----------- + --------------------|
   \    -1 + 2*x/ |         2             2   (1 + 2*x)*(-1 + 2*x)|
                  \(1 + 2*x)    (-1 + 2*x)                        /
-------------------------------------------------------------------
                              1 + 2*x                              
$$\frac{16 \left(1 - \frac{2 x + 1}{2 x - 1}\right) \left(\frac{1}{\left(2 x + 1\right)^{2}} + \frac{1}{\left(2 x - 1\right) \left(2 x + 1\right)} + \frac{1}{\left(2 x - 1\right)^{2}}\right)}{2 x + 1}$$