/1 + 2*x\ log|-------| \1 - 2*x/
log((1 + 2*x)/(1 - 2*x))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
/ 2 2*(1 + 2*x)\
(1 - 2*x)*|------- + -----------|
|1 - 2*x 2|
\ (1 - 2*x) /
---------------------------------
1 + 2*x
/ 1 + 2*x \ / 1 1 \
4*|1 - --------|*|- ------- - --------|
\ -1 + 2*x/ \ 1 + 2*x -1 + 2*x/
---------------------------------------
1 + 2*x
/ 1 + 2*x \ / 1 1 1 \
16*|1 - --------|*|---------- + ----------- + --------------------|
\ -1 + 2*x/ | 2 2 (1 + 2*x)*(-1 + 2*x)|
\(1 + 2*x) (-1 + 2*x) /
-------------------------------------------------------------------
1 + 2*x
/ 1 + 2*x \ / 1 1 1 \
16*|1 - --------|*|---------- + ----------- + --------------------|
\ -1 + 2*x/ | 2 2 (1 + 2*x)*(-1 + 2*x)|
\(1 + 2*x) (-1 + 2*x) /
-------------------------------------------------------------------
1 + 2*x