Mister Exam

Other calculators


log(1+1/(x^2))

Derivative of log(1+1/(x^2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /    1 \
log|1 + --|
   |     2|
   \    x /
$$\log{\left(1 + \frac{1}{x^{2}} \right)}$$
log(1 + 1/(x^2))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    -2     
-----------
 3 /    1 \
x *|1 + --|
   |     2|
   \    x /
$$- \frac{2}{x^{3} \left(1 + \frac{1}{x^{2}}\right)}$$
The second derivative [src]
  /         2     \
2*|3 - -----------|
  |     2 /    1 \|
  |    x *|1 + --||
  |       |     2||
  \       \    x //
-------------------
     4 /    1 \    
    x *|1 + --|    
       |     2|    
       \    x /    
$$\frac{2 \left(3 - \frac{2}{x^{2} \left(1 + \frac{1}{x^{2}}\right)}\right)}{x^{4} \left(1 + \frac{1}{x^{2}}\right)}$$
The third derivative [src]
  /          4              9     \
4*|-6 - ------------ + -----------|
  |                2    2 /    1 \|
  |      4 /    1 \    x *|1 + --||
  |     x *|1 + --|       |     2||
  |        |     2|       \    x /|
  \        \    x /               /
-----------------------------------
             5 /    1 \            
            x *|1 + --|            
               |     2|            
               \    x /            
$$\frac{4 \left(-6 + \frac{9}{x^{2} \left(1 + \frac{1}{x^{2}}\right)} - \frac{4}{x^{4} \left(1 + \frac{1}{x^{2}}\right)^{2}}\right)}{x^{5} \left(1 + \frac{1}{x^{2}}\right)}$$
The graph
Derivative of log(1+1/(x^2))