Mister Exam

Derivative of log(1/x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /1    \
log|- - 1|
   \x    /
$$\log{\left(-1 + \frac{1}{x} \right)}$$
log(1/x - 1)
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
   -1     
----------
 2 /1    \
x *|- - 1|
   \x    /
$$- \frac{1}{x^{2} \left(-1 + \frac{1}{x}\right)}$$
The second derivative [src]
 /        1    \ 
-|2 + ---------| 
 |      /    1\| 
 |    x*|1 - -|| 
 \      \    x// 
-----------------
     3 /    1\   
    x *|1 - -|   
       \    x/   
$$- \frac{2 + \frac{1}{x \left(1 - \frac{1}{x}\right)}}{x^{3} \left(1 - \frac{1}{x}\right)}$$
The third derivative [src]
  /         1            3    \
2*|3 + ----------- + ---------|
  |              2     /    1\|
  |     2 /    1\    x*|1 - -||
  |    x *|1 - -|      \    x/|
  \       \    x/             /
-------------------------------
            4 /    1\          
           x *|1 - -|          
              \    x/          
$$\frac{2 \left(3 + \frac{3}{x \left(1 - \frac{1}{x}\right)} + \frac{1}{x^{2} \left(1 - \frac{1}{x}\right)^{2}}\right)}{x^{4} \left(1 - \frac{1}{x}\right)}$$