Mister Exam

Other calculators

Derivative of log4(x^4-3x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 4      2\
log\x  - 3*x /
--------------
    log(4)    
$$\frac{\log{\left(x^{4} - 3 x^{2} \right)}}{\log{\left(4 \right)}}$$
log(x^4 - 3*x^2)/log(4)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
             3    
   -6*x + 4*x     
------------------
/ 4      2\       
\x  - 3*x /*log(4)
$$\frac{4 x^{3} - 6 x}{\left(x^{4} - 3 x^{2}\right) \log{\left(4 \right)}}$$
The second derivative [src]
   /                        2\
   |             /        2\ |
   |       2   2*\-3 + 2*x / |
-2*|3 - 6*x  + --------------|
   |                    2    |
   \              -3 + x     /
------------------------------
      2 /      2\             
     x *\-3 + x /*log(4)      
$$- \frac{2 \left(- 6 x^{2} + 3 + \frac{2 \left(2 x^{2} - 3\right)^{2}}{x^{2} - 3}\right)}{x^{2} \left(x^{2} - 3\right) \log{\left(4 \right)}}$$
The third derivative [src]
  /                 3                            \
  |      /        2\      /        2\ /        2\|
  |    4*\-3 + 2*x /    9*\-1 + 2*x /*\-3 + 2*x /|
4*|6 + -------------- - -------------------------|
  |                2            2 /      2\      |
  |     2 /      2\            x *\-3 + x /      |
  \    x *\-3 + x /                              /
--------------------------------------------------
                  /      2\                       
                x*\-3 + x /*log(4)                
$$\frac{4 \left(6 - \frac{9 \left(2 x^{2} - 3\right) \left(2 x^{2} - 1\right)}{x^{2} \left(x^{2} - 3\right)} + \frac{4 \left(2 x^{2} - 3\right)^{3}}{x^{2} \left(x^{2} - 3\right)^{2}}\right)}{x \left(x^{2} - 3\right) \log{\left(4 \right)}}$$