_______________ \/ log(cos(2*x))
d / _______________\ --\\/ log(cos(2*x)) / dx
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
-sin(2*x) -------------------------- _______________ cos(2*x)*\/ log(cos(2*x))
/ 2 2 \ | 2*sin (2*x) sin (2*x) | -|2 + ----------- + -----------------------| | 2 2 | \ cos (2*x) cos (2*x)*log(cos(2*x))/ --------------------------------------------- _______________ \/ log(cos(2*x))
/ 2 2 2 \ | 6 8*sin (2*x) 3*sin (2*x) 6*sin (2*x) | -|8 + ------------- + ----------- + ------------------------ + -----------------------|*sin(2*x) | log(cos(2*x)) 2 2 2 2 | \ cos (2*x) cos (2*x)*log (cos(2*x)) cos (2*x)*log(cos(2*x))/ ------------------------------------------------------------------------------------------------- _______________ cos(2*x)*\/ log(cos(2*x))