Mister Exam

Other calculators

Derivative of log6^sin4x*sqrt(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   sin(4*x)      ___
log        (6)*\/ x 
$$\sqrt{x} \log{\left(6 \right)}^{\sin{\left(4 x \right)}}$$
log(6)^sin(4*x)*sqrt(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    ; to find :

    1. Apply the power rule: goes to

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   sin(4*x)                                                 
log        (6)       ___    sin(4*x)                        
-------------- + 4*\/ x *log        (6)*cos(4*x)*log(log(6))
       ___                                                  
   2*\/ x                                                   
$$4 \sqrt{x} \log{\left(6 \right)}^{\sin{\left(4 x \right)}} \log{\left(\log{\left(6 \right)} \right)} \cos{\left(4 x \right)} + \frac{\log{\left(6 \right)}^{\sin{\left(4 x \right)}}}{2 \sqrt{x}}$$
The second derivative [src]
   sin(4*x)    /    1           ___ /     2                            \               4*cos(4*x)*log(log(6))\
log        (6)*|- ------ - 16*\/ x *\- cos (4*x)*log(log(6)) + sin(4*x)/*log(log(6)) + ----------------------|
               |     3/2                                                                         ___         |
               \  4*x                                                                          \/ x          /
$$\left(- 16 \sqrt{x} \left(\sin{\left(4 x \right)} - \log{\left(\log{\left(6 \right)} \right)} \cos^{2}{\left(4 x \right)}\right) \log{\left(\log{\left(6 \right)} \right)} + \frac{4 \log{\left(\log{\left(6 \right)} \right)} \cos{\left(4 x \right)}}{\sqrt{x}} - \frac{1}{4 x^{\frac{3}{2}}}\right) \log{\left(6 \right)}^{\sin{\left(4 x \right)}}$$
The third derivative [src]
               /            /     2                            \                                                                                                                           \
   sin(4*x)    |  3      24*\- cos (4*x)*log(log(6)) + sin(4*x)/*log(log(6))   3*cos(4*x)*log(log(6))        ___ /       2         2                                 \                     |
log        (6)*|------ - --------------------------------------------------- - ---------------------- - 64*\/ x *\1 - cos (4*x)*log (log(6)) + 3*log(log(6))*sin(4*x)/*cos(4*x)*log(log(6))|
               |   5/2                            ___                                    3/2                                                                                               |
               \8*x                             \/ x                                    x                                                                                                  /
$$\left(- 64 \sqrt{x} \left(3 \log{\left(\log{\left(6 \right)} \right)} \sin{\left(4 x \right)} - \log{\left(\log{\left(6 \right)} \right)}^{2} \cos^{2}{\left(4 x \right)} + 1\right) \log{\left(\log{\left(6 \right)} \right)} \cos{\left(4 x \right)} - \frac{24 \left(\sin{\left(4 x \right)} - \log{\left(\log{\left(6 \right)} \right)} \cos^{2}{\left(4 x \right)}\right) \log{\left(\log{\left(6 \right)} \right)}}{\sqrt{x}} - \frac{3 \log{\left(\log{\left(6 \right)} \right)} \cos{\left(4 x \right)}}{x^{\frac{3}{2}}} + \frac{3}{8 x^{\frac{5}{2}}}\right) \log{\left(6 \right)}^{\sin{\left(4 x \right)}}$$