sin(4*x) ___ log (6)*\/ x
log(6)^sin(4*x)*sqrt(x)
Apply the product rule:
; to find :
Let .
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result of the chain rule is:
; to find :
Apply the power rule: goes to
The result is:
Now simplify:
The answer is:
sin(4*x)
log (6) ___ sin(4*x)
-------------- + 4*\/ x *log (6)*cos(4*x)*log(log(6))
___
2*\/ x
sin(4*x) / 1 ___ / 2 \ 4*cos(4*x)*log(log(6))\
log (6)*|- ------ - 16*\/ x *\- cos (4*x)*log(log(6)) + sin(4*x)/*log(log(6)) + ----------------------|
| 3/2 ___ |
\ 4*x \/ x /
/ / 2 \ \
sin(4*x) | 3 24*\- cos (4*x)*log(log(6)) + sin(4*x)/*log(log(6)) 3*cos(4*x)*log(log(6)) ___ / 2 2 \ |
log (6)*|------ - --------------------------------------------------- - ---------------------- - 64*\/ x *\1 - cos (4*x)*log (log(6)) + 3*log(log(6))*sin(4*x)/*cos(4*x)*log(log(6))|
| 5/2 ___ 3/2 |
\8*x \/ x x /