Mister Exam

Other calculators

Derivative of (log(4x-2))/(ctg2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(4*x - 2)
------------
  cot(2*x)  
$$\frac{\log{\left(4 x - 2 \right)}}{\cot{\left(2 x \right)}}$$
log(4*x - 2)/cot(2*x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    To find :

    1. There are multiple ways to do this derivative.

      Method #1

      1. Rewrite the function to be differentiated:

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. Let .

          2. The derivative of sine is cosine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          To find :

          1. Let .

          2. The derivative of cosine is negative sine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          Now plug in to the quotient rule:

        The result of the chain rule is:

      Method #2

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                     /         2     \             
        4            \2 + 2*cot (2*x)/*log(4*x - 2)
------------------ + ------------------------------
(4*x - 2)*cot(2*x)                2                
                               cot (2*x)           
$$\frac{\left(2 \cot^{2}{\left(2 x \right)} + 2\right) \log{\left(4 x - 2 \right)}}{\cot^{2}{\left(2 x \right)}} + \frac{4}{\left(4 x - 2\right) \cot{\left(2 x \right)}}$$
The second derivative [src]
  /                   /       2     \                      /            2     \                  \
  |       1         2*\1 + cot (2*x)/      /       2     \ |     1 + cot (2*x)|                  |
4*|- ----------- + ------------------- + 2*\1 + cot (2*x)/*|-1 + -------------|*log(2*(-1 + 2*x))|
  |            2   (-1 + 2*x)*cot(2*x)                     |          2       |                  |
  \  (-1 + 2*x)                                            \       cot (2*x)  /                  /
--------------------------------------------------------------------------------------------------
                                             cot(2*x)                                             
$$\frac{4 \left(2 \left(\frac{\cot^{2}{\left(2 x \right)} + 1}{\cot^{2}{\left(2 x \right)}} - 1\right) \left(\cot^{2}{\left(2 x \right)} + 1\right) \log{\left(2 \left(2 x - 1\right) \right)} + \frac{2 \left(\cot^{2}{\left(2 x \right)} + 1\right)}{\left(2 x - 1\right) \cot{\left(2 x \right)}} - \frac{1}{\left(2 x - 1\right)^{2}}\right)}{\cot{\left(2 x \right)}}$$
The third derivative [src]
  /                                                                                                                                                   /            2     \\
  |                                                                                                                                   /       2     \ |     1 + cot (2*x)||
  |                         /                                   2                    3\                                             6*\1 + cot (2*x)/*|-1 + -------------||
  |                         |                    /       2     \      /       2     \ |                         /       2     \                       |          2       ||
  |         2               |         2        5*\1 + cot (2*x)/    3*\1 + cot (2*x)/ |                       3*\1 + cot (2*x)/                       \       cot (2*x)  /|
8*|-------------------- + 2*|2 + 2*cot (2*x) - ------------------ + ------------------|*log(2*(-1 + 2*x)) - --------------------- + --------------------------------------|
  |          3              |                         2                    4          |                               2    2                 (-1 + 2*x)*cot(2*x)          |
  \(-1 + 2*x) *cot(2*x)     \                      cot (2*x)            cot (2*x)     /                     (-1 + 2*x) *cot (2*x)                                         /
$$8 \left(2 \left(\frac{3 \left(\cot^{2}{\left(2 x \right)} + 1\right)^{3}}{\cot^{4}{\left(2 x \right)}} - \frac{5 \left(\cot^{2}{\left(2 x \right)} + 1\right)^{2}}{\cot^{2}{\left(2 x \right)}} + 2 \cot^{2}{\left(2 x \right)} + 2\right) \log{\left(2 \left(2 x - 1\right) \right)} + \frac{6 \left(\frac{\cot^{2}{\left(2 x \right)} + 1}{\cot^{2}{\left(2 x \right)}} - 1\right) \left(\cot^{2}{\left(2 x \right)} + 1\right)}{\left(2 x - 1\right) \cot{\left(2 x \right)}} - \frac{3 \left(\cot^{2}{\left(2 x \right)} + 1\right)}{\left(2 x - 1\right)^{2} \cot^{2}{\left(2 x \right)}} + \frac{2}{\left(2 x - 1\right)^{3} \cot{\left(2 x \right)}}\right)$$