log(4*log(2*tan(x)))
log(4*log(2*tan(x)))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
So, the result is:
The result of the chain rule is:
So, the result is:
The result of the chain rule is:
Now simplify:
The answer is:
2 2 + 2*tan (x) ---------------------- 2*log(2*tan(x))*tan(x)
/ 2 2 \ / 2 \ | 1 + tan (x) 1 + tan (x) | \1 + tan (x)/*|2 - ----------- - ---------------------| | 2 2 | \ tan (x) log(2*tan(x))*tan (x)/ ------------------------------------------------------- log(2*tan(x))
/ 2 2 2 \ | / 2 \ / 2 \ / 2 \ / 2 \ / 2 \ | / 2 \ | 4*\1 + tan (x)/ 2*\1 + tan (x)/ 6*\1 + tan (x)/ 2*\1 + tan (x)/ 3*\1 + tan (x)/ | \1 + tan (x)/*|4*tan(x) - --------------- + ---------------- - -------------------- + ---------------------- + ---------------------| | tan(x) 3 log(2*tan(x))*tan(x) 2 3 3 | \ tan (x) log (2*tan(x))*tan (x) log(2*tan(x))*tan (x)/ ------------------------------------------------------------------------------------------------------------------------------------- log(2*tan(x))