Mister Exam

Other calculators


log_4(8^x+2^x)

Derivative of log_4(8^x+2^x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / x    x\
log\8  + 2 /
------------
   log(4)   
$$\frac{\log{\left(2^{x} + 8^{x} \right)}}{\log{\left(4 \right)}}$$
log(8^x + 2^x)/log(4)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        The result is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 x           x       
2 *log(2) + 8 *log(8)
---------------------
   / x    x\         
   \8  + 2 /*log(4)  
$$\frac{2^{x} \log{\left(2 \right)} + 8^{x} \log{\left(8 \right)}}{\left(2^{x} + 8^{x}\right) \log{\left(4 \right)}}$$
The second derivative [src]
                                                 2
                          / x           x       \ 
 x    2       x    2      \2 *log(2) + 8 *log(8)/ 
2 *log (2) + 8 *log (8) - ------------------------
                                   x    x         
                                  2  + 8          
--------------------------------------------------
                 / x    x\                        
                 \2  + 8 /*log(4)                 
$$\frac{2^{x} \log{\left(2 \right)}^{2} + 8^{x} \log{\left(8 \right)}^{2} - \frac{\left(2^{x} \log{\left(2 \right)} + 8^{x} \log{\left(8 \right)}\right)^{2}}{2^{x} + 8^{x}}}{\left(2^{x} + 8^{x}\right) \log{\left(4 \right)}}$$
The third derivative [src]
                                                   3                                                      
                            / x           x       \      / x    2       x    2   \ / x           x       \
 x    3       x    3      2*\2 *log(2) + 8 *log(8)/    3*\2 *log (2) + 8 *log (8)/*\2 *log(2) + 8 *log(8)/
2 *log (2) + 8 *log (8) + -------------------------- - ---------------------------------------------------
                                           2                                  x    x                      
                                  / x    x\                                  2  + 8                       
                                  \2  + 8 /                                                               
----------------------------------------------------------------------------------------------------------
                                             / x    x\                                                    
                                             \2  + 8 /*log(4)                                             
$$\frac{2^{x} \log{\left(2 \right)}^{3} + 8^{x} \log{\left(8 \right)}^{3} - \frac{3 \left(2^{x} \log{\left(2 \right)} + 8^{x} \log{\left(8 \right)}\right) \left(2^{x} \log{\left(2 \right)}^{2} + 8^{x} \log{\left(8 \right)}^{2}\right)}{2^{x} + 8^{x}} + \frac{2 \left(2^{x} \log{\left(2 \right)} + 8^{x} \log{\left(8 \right)}\right)^{3}}{\left(2^{x} + 8^{x}\right)^{2}}}{\left(2^{x} + 8^{x}\right) \log{\left(4 \right)}}$$
The graph
Derivative of log_4(8^x+2^x)