Mister Exam

Derivative of log3(x)*sin2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(x)         
------*sin(2*x)
log(3)         
$$\frac{\log{\left(x \right)}}{\log{\left(3 \right)}} \sin{\left(2 x \right)}$$
(log(x)/log(3))*sin(2*x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the product rule:

      ; to find :

      1. The derivative of is .

      ; to find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result is:

    To find :

    1. The derivative of the constant is zero.

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
sin(2*x)   2*cos(2*x)*log(x)
-------- + -----------------
x*log(3)         log(3)     
$$\frac{2 \log{\left(x \right)} \cos{\left(2 x \right)}}{\log{\left(3 \right)}} + \frac{\sin{\left(2 x \right)}}{x \log{\left(3 \right)}}$$
The second derivative [src]
  sin(2*x)                       4*cos(2*x)
- -------- - 4*log(x)*sin(2*x) + ----------
      2                              x     
     x                                     
-------------------------------------------
                   log(3)                  
$$\frac{- 4 \log{\left(x \right)} \sin{\left(2 x \right)} + \frac{4 \cos{\left(2 x \right)}}{x} - \frac{\sin{\left(2 x \right)}}{x^{2}}}{\log{\left(3 \right)}}$$
The third derivative [src]
  /sin(2*x)   6*sin(2*x)                       3*cos(2*x)\
2*|-------- - ---------- - 4*cos(2*x)*log(x) - ----------|
  |    3          x                                 2    |
  \   x                                            x     /
----------------------------------------------------------
                          log(3)                          
$$\frac{2 \left(- 4 \log{\left(x \right)} \cos{\left(2 x \right)} - \frac{6 \sin{\left(2 x \right)}}{x} - \frac{3 \cos{\left(2 x \right)}}{x^{2}} + \frac{\sin{\left(2 x \right)}}{x^{3}}\right)}{\log{\left(3 \right)}}$$