/ 2 2*x - 1\ log\sin (x) - e / ----------------------- log(3)
/ / 2 2*x - 1\\ d |log\sin (x) - e /| --|-----------------------| dx\ log(3) /
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
The derivative of is itself.
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
So, the result is:
The result is:
The result of the chain rule is:
So, the result is:
Now simplify:
The answer is:
2*x - 1 - 2*e + 2*cos(x)*sin(x) ------------------------------ / 2 2*x - 1\ \sin (x) - e /*log(3)
/ 2\ | / -1 + 2*x\ | | 2 2 -1 + 2*x 2*\-cos(x)*sin(x) + e / | -2*|cos (x) - sin (x) - 2*e + -------------------------------| | 2 -1 + 2*x | \ - sin (x) + e / ---------------------------------------------------------------------- / 2 -1 + 2*x\ \- sin (x) + e /*log(3)
/ 3 \ | / -1 + 2*x\ / -1 + 2*x\ / 2 2 -1 + 2*x\| | -1 + 2*x 4*\-cos(x)*sin(x) + e / 3*\-cos(x)*sin(x) + e /*\sin (x) - cos (x) + 2*e /| 4*|2*e + 2*cos(x)*sin(x) + ------------------------------- - ----------------------------------------------------------------| | 2 2 -1 + 2*x | | / 2 -1 + 2*x\ - sin (x) + e | \ \- sin (x) + e / / -------------------------------------------------------------------------------------------------------------------------------------- / 2 -1 + 2*x\ \- sin (x) + e /*log(3)