Mister Exam

Other calculators


log3(sin²x-e^(2x-1))

Derivative of log3(sin²x-e^(2x-1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   2       2*x - 1\
log\sin (x) - e       /
-----------------------
         log(3)        
$$\frac{\log{\left(\sin^{2}{\left(x \right)} - e^{2 x - 1} \right)}}{\log{\left(3 \right)}}$$
  /   /   2       2*x - 1\\
d |log\sin (x) - e       /|
--|-----------------------|
dx\         log(3)        /
$$\frac{d}{d x} \frac{\log{\left(\sin^{2}{\left(x \right)} - e^{2 x - 1} \right)}}{\log{\left(3 \right)}}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Let .

        2. Apply the power rule: goes to

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of sine is cosine:

          The result of the chain rule is:

        4. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Let .

          2. The derivative of is itself.

          3. Then, apply the chain rule. Multiply by :

            1. Differentiate term by term:

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: goes to

                So, the result is:

              2. The derivative of the constant is zero.

              The result is:

            The result of the chain rule is:

          So, the result is:

        The result is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     2*x - 1                  
- 2*e        + 2*cos(x)*sin(x)
------------------------------
 /   2       2*x - 1\         
 \sin (x) - e       /*log(3)  
$$\frac{2 \sin{\left(x \right)} \cos{\left(x \right)} - 2 e^{2 x - 1}}{\left(\sin^{2}{\left(x \right)} - e^{2 x - 1}\right) \log{\left(3 \right)}}$$
The second derivative [src]
   /                                                                2\
   |                                    /                  -1 + 2*x\ |
   |   2         2         -1 + 2*x   2*\-cos(x)*sin(x) + e        / |
-2*|cos (x) - sin (x) - 2*e         + -------------------------------|
   |                                            2       -1 + 2*x     |
   \                                       - sin (x) + e             /
----------------------------------------------------------------------
                    /     2       -1 + 2*x\                           
                    \- sin (x) + e        /*log(3)                    
$$- \frac{2 \cdot \left(- \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)} + \frac{2 \left(- \sin{\left(x \right)} \cos{\left(x \right)} + e^{2 x - 1}\right)^{2}}{- \sin^{2}{\left(x \right)} + e^{2 x - 1}} - 2 e^{2 x - 1}\right)}{\left(- \sin^{2}{\left(x \right)} + e^{2 x - 1}\right) \log{\left(3 \right)}}$$
The third derivative [src]
  /                                                              3                                                                   \
  |                                  /                  -1 + 2*x\      /                  -1 + 2*x\ /   2         2         -1 + 2*x\|
  |   -1 + 2*x                     4*\-cos(x)*sin(x) + e        /    3*\-cos(x)*sin(x) + e        /*\sin (x) - cos (x) + 2*e        /|
4*|2*e         + 2*cos(x)*sin(x) + ------------------------------- - ----------------------------------------------------------------|
  |                                                           2                                2       -1 + 2*x                      |
  |                                    /     2       -1 + 2*x\                            - sin (x) + e                              |
  \                                    \- sin (x) + e        /                                                                       /
--------------------------------------------------------------------------------------------------------------------------------------
                                                    /     2       -1 + 2*x\                                                           
                                                    \- sin (x) + e        /*log(3)                                                    
$$\frac{4 \cdot \left(2 \sin{\left(x \right)} \cos{\left(x \right)} + \frac{4 \left(- \sin{\left(x \right)} \cos{\left(x \right)} + e^{2 x - 1}\right)^{3}}{\left(- \sin^{2}{\left(x \right)} + e^{2 x - 1}\right)^{2}} - \frac{3 \left(- \sin{\left(x \right)} \cos{\left(x \right)} + e^{2 x - 1}\right) \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)} + 2 e^{2 x - 1}\right)}{- \sin^{2}{\left(x \right)} + e^{2 x - 1}} + 2 e^{2 x - 1}\right)}{\left(- \sin^{2}{\left(x \right)} + e^{2 x - 1}\right) \log{\left(3 \right)}}$$
The graph
Derivative of log3(sin²x-e^(2x-1))