Mister Exam

Derivative of log2(sqrt3x+4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /  _____    \
log\\/ 3*x  + 4/
----------------
     log(2)     
log(3x+4)log(2)\frac{\log{\left(\sqrt{3 x} + 4 \right)}}{\log{\left(2 \right)}}
log(sqrt(3*x) + 4)/log(2)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=3x+4u = \sqrt{3 x} + 4.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddx(3x+4)\frac{d}{d x} \left(\sqrt{3 x} + 4\right):

      1. Differentiate 3x+4\sqrt{3 x} + 4 term by term:

        1. Let u=3xu = 3 x.

        2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

        3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 33

          The result of the chain rule is:

          32x\frac{\sqrt{3}}{2 \sqrt{x}}

        4. The derivative of the constant 44 is zero.

        The result is: 32x\frac{\sqrt{3}}{2 \sqrt{x}}

      The result of the chain rule is:

      32x(3x+4)\frac{\sqrt{3}}{2 \sqrt{x} \left(\sqrt{3 x} + 4\right)}

    So, the result is: 32x(3x+4)log(2)\frac{\sqrt{3}}{2 \sqrt{x} \left(\sqrt{3 x} + 4\right) \log{\left(2 \right)}}

  2. Now simplify:

    32(4x+3x)log(2)\frac{\sqrt{3}}{2 \left(4 \sqrt{x} + \sqrt{3} x\right) \log{\left(2 \right)}}


The answer is:

32(4x+3x)log(2)\frac{\sqrt{3}}{2 \left(4 \sqrt{x} + \sqrt{3} x\right) \log{\left(2 \right)}}

The graph
02468-8-6-4-2-101005
The first derivative [src]
             ___            
           \/ 3             
----------------------------
    ___ /  _____    \       
2*\/ x *\\/ 3*x  + 4/*log(2)
32x(3x+4)log(2)\frac{\sqrt{3}}{2 \sqrt{x} \left(\sqrt{3 x} + 4\right) \log{\left(2 \right)}}
The second derivative [src]
 /  ___                      \ 
 |\/ 3             3         | 
-|----- + -------------------| 
 |  3/2     /      ___   ___\| 
 \ x      x*\4 + \/ 3 *\/ x // 
-------------------------------
     /      ___   ___\         
   4*\4 + \/ 3 *\/ x /*log(2)  
3x(3x+4)+3x324(3x+4)log(2)- \frac{\frac{3}{x \left(\sqrt{3} \sqrt{x} + 4\right)} + \frac{\sqrt{3}}{x^{\frac{3}{2}}}}{4 \left(\sqrt{3} \sqrt{x} + 4\right) \log{\left(2 \right)}}
The third derivative [src]
  /  ___                                      ___        \
  |\/ 3             3                     2*\/ 3         |
3*|----- + -------------------- + -----------------------|
  |  5/2    2 /      ___   ___\                         2|
  | x      x *\4 + \/ 3 *\/ x /    3/2 /      ___   ___\ |
  \                               x   *\4 + \/ 3 *\/ x / /
----------------------------------------------------------
                  /      ___   ___\                       
                8*\4 + \/ 3 *\/ x /*log(2)                
3(3x2(3x+4)+23x32(3x+4)2+3x52)8(3x+4)log(2)\frac{3 \left(\frac{3}{x^{2} \left(\sqrt{3} \sqrt{x} + 4\right)} + \frac{2 \sqrt{3}}{x^{\frac{3}{2}} \left(\sqrt{3} \sqrt{x} + 4\right)^{2}} + \frac{\sqrt{3}}{x^{\frac{5}{2}}}\right)}{8 \left(\sqrt{3} \sqrt{x} + 4\right) \log{\left(2 \right)}}