Mister Exam

Derivative of log2[log3(log2x)]

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /log(log(2*x))\
log|-------------|
   \    log(3)   /
------------------
      log(2)      
$$\frac{\log{\left(\frac{\log{\left(\log{\left(2 x \right)} \right)}}{\log{\left(3 \right)}} \right)}}{\log{\left(2 \right)}}$$
  /   /log(log(2*x))\\
  |log|-------------||
d |   \    log(3)   /|
--|------------------|
dx\      log(2)      /
$$\frac{d}{d x} \frac{\log{\left(\frac{\log{\left(\log{\left(2 x \right)} \right)}}{\log{\left(3 \right)}} \right)}}{\log{\left(2 \right)}}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. The derivative of is .

        3. Then, apply the chain rule. Multiply by :

          1. Let .

          2. The derivative of is .

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          The result of the chain rule is:

        So, the result is:

      The result of the chain rule is:

    So, the result is:


The answer is:

The graph
The first derivative [src]
               1               
-------------------------------
x*log(2)*log(2*x)*log(log(2*x))
$$\frac{1}{x \log{\left(2 \right)} \log{\left(2 x \right)} \log{\left(\log{\left(2 x \right)} \right)}}$$
The second derivative [src]
 /       1                 1           \ 
-|1 + -------- + ----------------------| 
 \    log(2*x)   log(2*x)*log(log(2*x))/ 
-----------------------------------------
      2                                  
     x *log(2)*log(2*x)*log(log(2*x))    
$$- \frac{1 + \frac{1}{\log{\left(2 x \right)}} + \frac{1}{\log{\left(2 x \right)} \log{\left(\log{\left(2 x \right)} \right)}}}{x^{2} \log{\left(2 \right)} \log{\left(2 x \right)} \log{\left(\log{\left(2 x \right)} \right)}}$$
The third derivative [src]
        2          3                  2                         3                         3           
2 + --------- + -------- + ------------------------ + ---------------------- + -----------------------
       2        log(2*x)      2         2             log(2*x)*log(log(2*x))      2                   
    log (2*x)              log (2*x)*log (log(2*x))                            log (2*x)*log(log(2*x))
------------------------------------------------------------------------------------------------------
                                    3                                                                 
                                   x *log(2)*log(2*x)*log(log(2*x))                                   
$$\frac{2 + \frac{3}{\log{\left(2 x \right)}} + \frac{3}{\log{\left(2 x \right)} \log{\left(\log{\left(2 x \right)} \right)}} + \frac{2}{\log{\left(2 x \right)}^{2}} + \frac{3}{\log{\left(2 x \right)}^{2} \log{\left(\log{\left(2 x \right)} \right)}} + \frac{2}{\log{\left(2 x \right)}^{2} \log{\left(\log{\left(2 x \right)} \right)}^{2}}}{x^{3} \log{\left(2 \right)} \log{\left(2 x \right)} \log{\left(\log{\left(2 x \right)} \right)}}$$
The graph
Derivative of log2[log3(log2x)]