/log(tan(x))\
log|-----------|
\ log(5) /
----------------
log(16)
/ /log(tan(x))\\ |log|-----------|| d | \ log(5) /| --|----------------| dx\ log(16) /
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result of the chain rule is:
So, the result is:
The result of the chain rule is:
So, the result is:
Now simplify:
The answer is:
2
1 + tan (x)
--------------------------
log(16)*log(tan(x))*tan(x)
/ 2 2 \
/ 2 \ | 1 + tan (x) 1 + tan (x) |
-\1 + tan (x)/*|-2 + ----------- + -------------------|
| 2 2 |
\ tan (x) log(tan(x))*tan (x)/
--------------------------------------------------------
log(16)*log(tan(x))
/ 2 2 2 \
| / 2 \ / 2 \ / 2 \ / 2 \ / 2 \ |
/ 2 \ | 4*\1 + tan (x)/ 2*\1 + tan (x)/ 6*\1 + tan (x)/ 2*\1 + tan (x)/ 3*\1 + tan (x)/ |
\1 + tan (x)/*|4*tan(x) - --------------- + ---------------- - ------------------ + -------------------- + -------------------|
| tan(x) 3 log(tan(x))*tan(x) 2 3 3 |
\ tan (x) log (tan(x))*tan (x) log(tan(x))*tan (x)/
-------------------------------------------------------------------------------------------------------------------------------
log(16)*log(tan(x))