Mister Exam

Derivative of log16(log5(tanx))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /log(tan(x))\
log|-----------|
   \   log(5)  /
----------------
    log(16)     
$$\frac{\log{\left(\frac{\log{\left(\tan{\left(x \right)} \right)}}{\log{\left(5 \right)}} \right)}}{\log{\left(16 \right)}}$$
  /   /log(tan(x))\\
  |log|-----------||
d |   \   log(5)  /|
--|----------------|
dx\    log(16)     /
$$\frac{d}{d x} \frac{\log{\left(\frac{\log{\left(\tan{\left(x \right)} \right)}}{\log{\left(5 \right)}} \right)}}{\log{\left(16 \right)}}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. The derivative of is .

        3. Then, apply the chain rule. Multiply by :

          1. Rewrite the function to be differentiated:

          2. Apply the quotient rule, which is:

            and .

            To find :

            1. The derivative of sine is cosine:

            To find :

            1. The derivative of cosine is negative sine:

            Now plug in to the quotient rule:

          The result of the chain rule is:

        So, the result is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
              2           
       1 + tan (x)        
--------------------------
log(16)*log(tan(x))*tan(x)
$$\frac{\tan^{2}{\left(x \right)} + 1}{\log{\left(16 \right)} \log{\left(\tan{\left(x \right)} \right)} \tan{\left(x \right)}}$$
The second derivative [src]
               /            2                 2       \ 
 /       2   \ |     1 + tan (x)       1 + tan (x)    | 
-\1 + tan (x)/*|-2 + ----------- + -------------------| 
               |          2                       2   | 
               \       tan (x)     log(tan(x))*tan (x)/ 
--------------------------------------------------------
                  log(16)*log(tan(x))                   
$$- \frac{\left(\tan^{2}{\left(x \right)} + 1\right) \left(\frac{\tan^{2}{\left(x \right)} + 1}{\tan^{2}{\left(x \right)}} + \frac{\tan^{2}{\left(x \right)} + 1}{\log{\left(\tan{\left(x \right)} \right)} \tan^{2}{\left(x \right)}} - 2\right)}{\log{\left(16 \right)} \log{\left(\tan{\left(x \right)} \right)}}$$
The third derivative [src]
              /                                            2                                         2                      2 \
              |             /       2   \     /       2   \       /       2   \         /       2   \          /       2   \  |
/       2   \ |           4*\1 + tan (x)/   2*\1 + tan (x)/     6*\1 + tan (x)/       2*\1 + tan (x)/        3*\1 + tan (x)/  |
\1 + tan (x)/*|4*tan(x) - --------------- + ---------------- - ------------------ + -------------------- + -------------------|
              |                tan(x)              3           log(tan(x))*tan(x)      2            3                     3   |
              \                                 tan (x)                             log (tan(x))*tan (x)   log(tan(x))*tan (x)/
-------------------------------------------------------------------------------------------------------------------------------
                                                      log(16)*log(tan(x))                                                      
$$\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \left(\frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\tan^{3}{\left(x \right)}} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\log{\left(\tan{\left(x \right)} \right)} \tan^{3}{\left(x \right)}} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\log{\left(\tan{\left(x \right)} \right)}^{2} \tan^{3}{\left(x \right)}} - \frac{4 \left(\tan^{2}{\left(x \right)} + 1\right)}{\tan{\left(x \right)}} - \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right)}{\log{\left(\tan{\left(x \right)} \right)} \tan{\left(x \right)}} + 4 \tan{\left(x \right)}\right)}{\log{\left(16 \right)} \log{\left(\tan{\left(x \right)} \right)}}$$
The graph
Derivative of log16(log5(tanx))