3 log (x) - 1
Differentiate log(x)3−1\log{\left(x \right)}^{3} - 1log(x)3−1 term by term:
Let u=log(x)u = \log{\left(x \right)}u=log(x).
Apply the power rule: u3u^{3}u3 goes to 3u23 u^{2}3u2
Then, apply the chain rule. Multiply by ddxlog(x)\frac{d}{d x} \log{\left(x \right)}dxdlog(x):
The derivative of log(x)\log{\left(x \right)}log(x) is 1x\frac{1}{x}x1.
The result of the chain rule is:
The derivative of the constant −1-1−1 is zero.
The result is: 3log(x)2x\frac{3 \log{\left(x \right)}^{2}}{x}x3log(x)2
The answer is:
2 3*log (x) --------- x
3*(2 - log(x))*log(x) --------------------- 2 x
/ 2 \ 6*\1 + log (x) - 3*log(x)/ -------------------------- 3 x