Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of is .
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$\frac{6 \log{\left(x \right)}^{5}}{x}$$
The second derivative
[src]
4
6*log (x)*(5 - log(x))
----------------------
2
x
$$\frac{6 \cdot \left(5 - \log{\left(x \right)}\right) \log{\left(x \right)}^{4}}{x^{2}}$$
The third derivative
[src]
3 / 2 \
6*log (x)*\20 - 15*log(x) + 2*log (x)/
--------------------------------------
3
x
$$\frac{6 \cdot \left(2 \log{\left(x \right)}^{2} - 15 \log{\left(x \right)} + 20\right) \log{\left(x \right)}^{3}}{x^{3}}$$