Mister Exam

Derivative of lnx^6

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   6   
log (x)
$$\log{\left(x \right)}^{6}$$
d /   6   \
--\log (x)/
dx         
$$\frac{d}{d x} \log{\left(x \right)}^{6}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of is .

    The result of the chain rule is:


The answer is:

The first derivative [src]
     5   
6*log (x)
---------
    x    
$$\frac{6 \log{\left(x \right)}^{5}}{x}$$
The second derivative [src]
     4                
6*log (x)*(5 - log(x))
----------------------
           2          
          x           
$$\frac{6 \cdot \left(5 - \log{\left(x \right)}\right) \log{\left(x \right)}^{4}}{x^{2}}$$
The third derivative [src]
     3    /                      2   \
6*log (x)*\20 - 15*log(x) + 2*log (x)/
--------------------------------------
                   3                  
                  x                   
$$\frac{6 \cdot \left(2 \log{\left(x \right)}^{2} - 15 \log{\left(x \right)} + 20\right) \log{\left(x \right)}^{3}}{x^{3}}$$