4 log (x)
d / 4 \ --\log (x)/ dx
Let u=log(x)u = \log{\left(x \right)}u=log(x).
Apply the power rule: u4u^{4}u4 goes to 4u34 u^{3}4u3
Then, apply the chain rule. Multiply by ddxlog(x)\frac{d}{d x} \log{\left(x \right)}dxdlog(x):
The derivative of log(x)\log{\left(x \right)}log(x) is 1x\frac{1}{x}x1.
The result of the chain rule is:
The answer is:
3 4*log (x) --------- x
2 4*log (x)*(3 - log(x)) ---------------------- 2 x
/ 2 \ 4*\6 - 9*log(x) + 2*log (x)/*log(x) ----------------------------------- 3 x