Mister Exam

Derivative of lnx^4

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   4   
log (x)
log(x)4\log{\left(x \right)}^{4}
d /   4   \
--\log (x)/
dx         
ddxlog(x)4\frac{d}{d x} \log{\left(x \right)}^{4}
Detail solution
  1. Let u=log(x)u = \log{\left(x \right)}.

  2. Apply the power rule: u4u^{4} goes to 4u34 u^{3}

  3. Then, apply the chain rule. Multiply by ddxlog(x)\frac{d}{d x} \log{\left(x \right)}:

    1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

    The result of the chain rule is:

    4log(x)3x\frac{4 \log{\left(x \right)}^{3}}{x}


The answer is:

4log(x)3x\frac{4 \log{\left(x \right)}^{3}}{x}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
     3   
4*log (x)
---------
    x    
4log(x)3x\frac{4 \log{\left(x \right)}^{3}}{x}
The second derivative [src]
     2                
4*log (x)*(3 - log(x))
----------------------
           2          
          x           
4(log(x)+3)log(x)2x2\frac{4 \cdot \left(- \log{\left(x \right)} + 3\right) \log{\left(x \right)}^{2}}{x^{2}}
The third derivative [src]
  /                    2   \       
4*\6 - 9*log(x) + 2*log (x)/*log(x)
-----------------------------------
                  3                
                 x                 
4(2log(x)29log(x)+6)log(x)x3\frac{4 \cdot \left(2 \log{\left(x \right)}^{2} - 9 \log{\left(x \right)} + 6\right) \log{\left(x \right)}}{x^{3}}
The graph
Derivative of lnx^4