Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of is .
The result of the chain rule is:
The answer is:
The first derivative
[src]
39
40*log (x)
-----------
x
$$\frac{40 \log{\left(x \right)}^{39}}{x}$$
The second derivative
[src]
38
40*log (x)*(39 - log(x))
-------------------------
2
x
$$\frac{40 \left(39 - \log{\left(x \right)}\right) \log{\left(x \right)}^{38}}{x^{2}}$$
The third derivative
[src]
37 / 2 \
40*log (x)*\1482 - 117*log(x) + 2*log (x)/
-------------------------------------------
3
x
$$\frac{40 \left(2 \log{\left(x \right)}^{2} - 117 \log{\left(x \right)} + 1482\right) \log{\left(x \right)}^{37}}{x^{3}}$$