Detail solution
-
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
The first derivative
[src]
asin(x) /log(log(x)) asin(x) \
log (x)*|----------- + --------|
| ________ x*log(x)|
| / 2 |
\\/ 1 - x /
$$\left(\frac{\log{\left(\log{\left(x \right)} \right)}}{\sqrt{1 - x^{2}}} + \frac{\operatorname{asin}{\left(x \right)}}{x \log{\left(x \right)}}\right) \log{\left(x \right)}^{\operatorname{asin}{\left(x \right)}}$$
The second derivative
[src]
/ 2 \
asin(x) |/log(log(x)) asin(x) \ x*log(log(x)) asin(x) asin(x) 2 |
log (x)*||----------- + --------| + ------------- - --------- - ---------- + --------------------|
|| ________ x*log(x)| 3/2 2 2 2 ________ |
|| / 2 | / 2\ x *log(x) x *log (x) / 2 |
\\\/ 1 - x / \1 - x / x*\/ 1 - x *log(x)/
$$\left(\frac{x \log{\left(\log{\left(x \right)} \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} + \left(\frac{\log{\left(\log{\left(x \right)} \right)}}{\sqrt{1 - x^{2}}} + \frac{\operatorname{asin}{\left(x \right)}}{x \log{\left(x \right)}}\right)^{2} + \frac{2}{x \sqrt{1 - x^{2}} \log{\left(x \right)}} - \frac{\operatorname{asin}{\left(x \right)}}{x^{2} \log{\left(x \right)}} - \frac{\operatorname{asin}{\left(x \right)}}{x^{2} \log{\left(x \right)}^{2}}\right) \log{\left(x \right)}^{\operatorname{asin}{\left(x \right)}}$$
The third derivative
[src]
/ 3 2 \
asin(x) |/log(log(x)) asin(x) \ log(log(x)) 3 /log(log(x)) asin(x) \ /x*log(log(x)) asin(x) asin(x) 2 \ 3 3 2*asin(x) 2*asin(x) 3*asin(x) 3*x *log(log(x))|
log (x)*||----------- + --------| + ----------- + ------------------ + 3*|----------- + --------|*|------------- - --------- - ---------- + --------------------| - --------------------- - ---------------------- + --------- + ---------- + ---------- + ----------------|
|| ________ x*log(x)| 3/2 3/2 | ________ x*log(x)| | 3/2 2 2 2 ________ | ________ ________ 3 3 3 3 2 5/2 |
|| / 2 | / 2\ / 2\ | / 2 | | / 2\ x *log(x) x *log (x) / 2 | 2 / 2 2 / 2 2 x *log(x) x *log (x) x *log (x) / 2\ |
\\\/ 1 - x / \1 - x / \1 - x / *log(x) \\/ 1 - x / \ \1 - x / x*\/ 1 - x *log(x)/ x *\/ 1 - x *log(x) x *\/ 1 - x *log (x) \1 - x / /
$$\left(\frac{3 x^{2} \log{\left(\log{\left(x \right)} \right)}}{\left(1 - x^{2}\right)^{\frac{5}{2}}} + \left(\frac{\log{\left(\log{\left(x \right)} \right)}}{\sqrt{1 - x^{2}}} + \frac{\operatorname{asin}{\left(x \right)}}{x \log{\left(x \right)}}\right)^{3} + 3 \left(\frac{\log{\left(\log{\left(x \right)} \right)}}{\sqrt{1 - x^{2}}} + \frac{\operatorname{asin}{\left(x \right)}}{x \log{\left(x \right)}}\right) \left(\frac{x \log{\left(\log{\left(x \right)} \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} + \frac{2}{x \sqrt{1 - x^{2}} \log{\left(x \right)}} - \frac{\operatorname{asin}{\left(x \right)}}{x^{2} \log{\left(x \right)}} - \frac{\operatorname{asin}{\left(x \right)}}{x^{2} \log{\left(x \right)}^{2}}\right) + \frac{\log{\left(\log{\left(x \right)} \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} + \frac{3}{\left(1 - x^{2}\right)^{\frac{3}{2}} \log{\left(x \right)}} - \frac{3}{x^{2} \sqrt{1 - x^{2}} \log{\left(x \right)}} - \frac{3}{x^{2} \sqrt{1 - x^{2}} \log{\left(x \right)}^{2}} + \frac{2 \operatorname{asin}{\left(x \right)}}{x^{3} \log{\left(x \right)}} + \frac{3 \operatorname{asin}{\left(x \right)}}{x^{3} \log{\left(x \right)}^{2}} + \frac{2 \operatorname{asin}{\left(x \right)}}{x^{3} \log{\left(x \right)}^{3}}\right) \log{\left(x \right)}^{\operatorname{asin}{\left(x \right)}}$$