Mister Exam

Other calculators

Derivative of lntg(pi/4+x/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   /pi   x\\
log|tan|-- + -||
   \   \4    2//
$$\log{\left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \right)}$$
log(tan(pi/4 + x/2))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       2/pi   x\
    tan |-- + -|
1       \4    2/
- + ------------
2        2      
----------------
     /pi   x\   
  tan|-- + -|   
     \4    2/   
$$\frac{\frac{\tan^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2} + \frac{1}{2}}{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}$$
The second derivative [src]
                                           2
                       /       2/pi + 2*x\\ 
                       |1 + tan |--------|| 
         2/pi + 2*x\   \        \   4    // 
2 + 2*tan |--------| - ---------------------
          \   4    /          2/pi + 2*x\   
                           tan |--------|   
                               \   4    /   
--------------------------------------------
                     4                      
$$\frac{- \frac{\left(\tan^{2}{\left(\frac{2 x + \pi}{4} \right)} + 1\right)^{2}}{\tan^{2}{\left(\frac{2 x + \pi}{4} \right)}} + 2 \tan^{2}{\left(\frac{2 x + \pi}{4} \right)} + 2}{4}$$
The third derivative [src]
                     /                                      2                         \
                     |                  /       2/pi + 2*x\\      /       2/pi + 2*x\\|
                     |                  |1 + tan |--------||    2*|1 + tan |--------|||
/       2/pi + 2*x\\ |     /pi + 2*x\   \        \   4    //      \        \   4    //|
|1 + tan |--------||*|2*tan|--------| + --------------------- - ----------------------|
\        \   4    // |     \   4    /          3/pi + 2*x\             /pi + 2*x\     |
                     |                      tan |--------|          tan|--------|     |
                     \                          \   4    /             \   4    /     /
---------------------------------------------------------------------------------------
                                           4                                           
$$\frac{\left(\tan^{2}{\left(\frac{2 x + \pi}{4} \right)} + 1\right) \left(\frac{\left(\tan^{2}{\left(\frac{2 x + \pi}{4} \right)} + 1\right)^{2}}{\tan^{3}{\left(\frac{2 x + \pi}{4} \right)}} - \frac{2 \left(\tan^{2}{\left(\frac{2 x + \pi}{4} \right)} + 1\right)}{\tan{\left(\frac{2 x + \pi}{4} \right)}} + 2 \tan{\left(\frac{2 x + \pi}{4} \right)}\right)}{4}$$