/ /pi x\\ log|tan|-- + -|| \ \4 2//
log(tan(pi/4 + x/2))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
2/pi x\ tan |-- + -| 1 \4 2/ - + ------------ 2 2 ---------------- /pi x\ tan|-- + -| \4 2/
2 / 2/pi + 2*x\\ |1 + tan |--------|| 2/pi + 2*x\ \ \ 4 // 2 + 2*tan |--------| - --------------------- \ 4 / 2/pi + 2*x\ tan |--------| \ 4 / -------------------------------------------- 4
/ 2 \ | / 2/pi + 2*x\\ / 2/pi + 2*x\\| | |1 + tan |--------|| 2*|1 + tan |--------||| / 2/pi + 2*x\\ | /pi + 2*x\ \ \ 4 // \ \ 4 //| |1 + tan |--------||*|2*tan|--------| + --------------------- - ----------------------| \ \ 4 // | \ 4 / 3/pi + 2*x\ /pi + 2*x\ | | tan |--------| tan|--------| | \ \ 4 / \ 4 / / --------------------------------------------------------------------------------------- 4