Mister Exam

Other calculators

Derivative of lnarctge^x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
              / 2\
              \x /
(log(atan(E)))    
$$\log{\left(\operatorname{atan}{\left(e \right)} \right)}^{x^{2}}$$
log(atan(E))^(x^2)
Detail solution
  1. Let .

  2. Then, apply the chain rule. Multiply by :

    1. Apply the power rule: goes to

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
                  / 2\                  
                  \x /                  
2*x*(log(atan(E)))    *log(log(atan(E)))
$$2 x \log{\left(\log{\left(\operatorname{atan}{\left(e \right)} \right)} \right)} \log{\left(\operatorname{atan}{\left(e \right)} \right)}^{x^{2}}$$
The second derivative [src]
                / 2\                                               
                \x / /       2                  \                  
2*(log(atan(E)))    *\1 + 2*x *log(log(atan(E)))/*log(log(atan(E)))
$$2 \left(2 x^{2} \log{\left(\log{\left(\operatorname{atan}{\left(e \right)} \right)} \right)} + 1\right) \log{\left(\log{\left(\operatorname{atan}{\left(e \right)} \right)} \right)} \log{\left(\operatorname{atan}{\left(e \right)} \right)}^{x^{2}}$$
The third derivative [src]
                  / 2\                                                
                  \x /    2               /       2                  \
4*x*(log(atan(E)))    *log (log(atan(E)))*\3 + 2*x *log(log(atan(E)))/
$$4 x \left(2 x^{2} \log{\left(\log{\left(\operatorname{atan}{\left(e \right)} \right)} \right)} + 3\right) \log{\left(\log{\left(\operatorname{atan}{\left(e \right)} \right)} \right)}^{2} \log{\left(\operatorname{atan}{\left(e \right)} \right)}^{x^{2}}$$