/ 2 \ |x + 3*x + 2| log|------------| \ x + 1 /
log((x^2 + 3*x + 2)/(x + 1))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
/ 2 \
|3 + 2*x x + 3*x + 2|
(x + 1)*|------- - ------------|
| x + 1 2 |
\ (x + 1) /
--------------------------------
2
x + 3*x + 2
2 / 2 \
2 + x + 3*x | 2 + x + 3*x|
3 + 2*x - ------------ / 2 \ (3 + 2*x)*|3 + 2*x - ------------|
1 + x 2*(3 + 2*x) 2*\2 + x + 3*x/ \ 1 + x /
2 + ---------------------- - ----------- + ---------------- - ----------------------------------
1 + x 1 + x 2 2
(1 + x) 2 + x + 3*x
------------------------------------------------------------------------------------------------
2
2 + x + 3*x
/ 2 / 2 \ \
| 2 + x + 3*x 3 + 2*x 2 / 2 \ | 2 + x + 3*x 3 + 2*x| / 2 \|
| 1 + ------------ - ------- 2 + x + 3*x 2 | 2 + x + 3*x| 2*(3 + 2*x)*|1 + ------------ - -------| | 2 + x + 3*x||
| 2 1 + x 3 + 2*x - ------------ (3 + 2*x) *|3 + 2*x - ------------| | 2 1 + x | (3 + 2*x)*|3 + 2*x - ------------||
| (1 + x) 1 + x \ 1 + x / \ (1 + x) / \ 1 + x /|
2*|- -------------------------- - ---------------------- + ----------------------------------- - ---------------------------------------- - ----------------------------------|
| 1 + x 2 2 2 / 2 \ |
| 2 + x + 3*x / 2 \ 2 + x + 3*x (1 + x)*\2 + x + 3*x/ |
\ \2 + x + 3*x/ /
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2
2 + x + 3*x