Mister Exam

Other calculators

Derivative of ln((x^2+3x+2)/(x+1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2          \
   |x  + 3*x + 2|
log|------------|
   \   x + 1    /
$$\log{\left(\frac{\left(x^{2} + 3 x\right) + 2}{x + 1} \right)}$$
log((x^2 + 3*x + 2)/(x + 1))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        3. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        /           2          \
        |3 + 2*x   x  + 3*x + 2|
(x + 1)*|------- - ------------|
        | x + 1             2  |
        \            (x + 1)   /
--------------------------------
           2                    
          x  + 3*x + 2          
$$\frac{\left(x + 1\right) \left(\frac{2 x + 3}{x + 1} - \frac{\left(x^{2} + 3 x\right) + 2}{\left(x + 1\right)^{2}}\right)}{\left(x^{2} + 3 x\right) + 2}$$
The second derivative [src]
                   2                                                    /               2      \
              2 + x  + 3*x                                              |          2 + x  + 3*x|
    3 + 2*x - ------------                   /     2      \   (3 + 2*x)*|3 + 2*x - ------------|
                 1 + x       2*(3 + 2*x)   2*\2 + x  + 3*x/             \             1 + x    /
2 + ---------------------- - ----------- + ---------------- - ----------------------------------
            1 + x               1 + x                 2                       2                 
                                               (1 + x)                   2 + x  + 3*x           
------------------------------------------------------------------------------------------------
                                               2                                                
                                          2 + x  + 3*x                                          
$$\frac{- \frac{\left(2 x + 3\right) \left(2 x + 3 - \frac{x^{2} + 3 x + 2}{x + 1}\right)}{x^{2} + 3 x + 2} + 2 - \frac{2 \left(2 x + 3\right)}{x + 1} + \frac{2 x + 3 - \frac{x^{2} + 3 x + 2}{x + 1}}{x + 1} + \frac{2 \left(x^{2} + 3 x + 2\right)}{\left(x + 1\right)^{2}}}{x^{2} + 3 x + 2}$$
The third derivative [src]
  /           2                                                                                              /         2                \                                     \
  |      2 + x  + 3*x   3 + 2*x                  2                    /               2      \               |    2 + x  + 3*x   3 + 2*x|             /               2      \|
  |  1 + ------------ - -------             2 + x  + 3*x            2 |          2 + x  + 3*x|   2*(3 + 2*x)*|1 + ------------ - -------|             |          2 + x  + 3*x||
  |               2      1 + x    3 + 2*x - ------------   (3 + 2*x) *|3 + 2*x - ------------|               |             2      1 + x |   (3 + 2*x)*|3 + 2*x - ------------||
  |        (1 + x)                             1 + x                  \             1 + x    /               \      (1 + x)             /             \             1 + x    /|
2*|- -------------------------- - ---------------------- + ----------------------------------- - ---------------------------------------- - ----------------------------------|
  |            1 + x                        2                                      2                                2                                     /     2      \      |
  |                                    2 + x  + 3*x                  /     2      \                            2 + x  + 3*x                       (1 + x)*\2 + x  + 3*x/      |
  \                                                                  \2 + x  + 3*x/                                                                                           /
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                       2                                                                                       
                                                                                  2 + x  + 3*x                                                                                 
$$\frac{2 \left(\frac{\left(2 x + 3\right)^{2} \left(2 x + 3 - \frac{x^{2} + 3 x + 2}{x + 1}\right)}{\left(x^{2} + 3 x + 2\right)^{2}} - \frac{2 \left(2 x + 3\right) \left(1 - \frac{2 x + 3}{x + 1} + \frac{x^{2} + 3 x + 2}{\left(x + 1\right)^{2}}\right)}{x^{2} + 3 x + 2} - \frac{2 x + 3 - \frac{x^{2} + 3 x + 2}{x + 1}}{x^{2} + 3 x + 2} - \frac{\left(2 x + 3\right) \left(2 x + 3 - \frac{x^{2} + 3 x + 2}{x + 1}\right)}{\left(x + 1\right) \left(x^{2} + 3 x + 2\right)} - \frac{1 - \frac{2 x + 3}{x + 1} + \frac{x^{2} + 3 x + 2}{\left(x + 1\right)^{2}}}{x + 1}\right)}{x^{2} + 3 x + 2}$$