Mister Exam

Derivative of ln(x^2-x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2    \
log\x  - x/
$$\log{\left(x^{2} - x \right)}$$
d /   / 2    \\
--\log\x  - x//
dx             
$$\frac{d}{d x} \log{\left(x^{2} - x \right)}$$
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
-1 + 2*x
--------
  2     
 x  - x 
$$\frac{2 x - 1}{x^{2} - x}$$
The second derivative [src]
              2
    (-1 + 2*x) 
2 - -----------
     x*(-1 + x)
---------------
   x*(-1 + x)  
$$\frac{2 - \frac{\left(2 x - 1\right)^{2}}{x \left(x - 1\right)}}{x \left(x - 1\right)}$$
The third derivative [src]
             /               2\
             |     (-1 + 2*x) |
2*(-1 + 2*x)*|-3 + -----------|
             \      x*(-1 + x)/
-------------------------------
           2         2         
          x *(-1 + x)          
$$\frac{2 \left(-3 + \frac{\left(2 x - 1\right)^{2}}{x \left(x - 1\right)}\right) \left(2 x - 1\right)}{x^{2} \left(x - 1\right)^{2}}$$
The graph
Derivative of ln(x^2-x)