/ ________\ | / 2 | log\x + \/ x - 1 /
log(x + sqrt(x^2 - 1))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
x 1 + ----------- ________ / 2 \/ x - 1 --------------- ________ / 2 x + \/ x - 1
/ 2 \ |/ x \ 2 | ||1 + ------------| x | || _________| -1 + -------| || / 2 | 2| |\ \/ -1 + x / -1 + x | -|------------------- + ------------| | _________ _________| | / 2 / 2 | \ x + \/ -1 + x \/ -1 + x / -------------------------------------- _________ / 2 x + \/ -1 + x
3 / 2 \ / x \ / 2 \ / x \ | x | 2*|1 + ------------| | x | 3*|1 + ------------|*|-1 + -------| | _________| 3*x*|-1 + -------| | _________| | 2| | / 2 | | 2| | / 2 | \ -1 + x / \ \/ -1 + x / \ -1 + x / \ \/ -1 + x / --------------------- + ------------------ + ----------------------------------- 2 3/2 _________ / _________\ / _________\ / 2\ / 2 | / 2 | | / 2 | \-1 + x / \/ -1 + x *\x + \/ -1 + x / \x + \/ -1 + x / -------------------------------------------------------------------------------- _________ / 2 x + \/ -1 + x