Mister Exam

Other calculators


ln(x+sqrt(x^2-1))

Derivative of ln(x+sqrt(x^2-1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /       ________\
   |      /  2     |
log\x + \/  x  - 1 /
$$\log{\left(x + \sqrt{x^{2} - 1} \right)}$$
log(x + sqrt(x^2 - 1))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. Apply the power rule: goes to

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
         x     
1 + -----------
       ________
      /  2     
    \/  x  - 1 
---------------
       ________
      /  2     
x + \/  x  - 1 
$$\frac{\frac{x}{\sqrt{x^{2} - 1}} + 1}{x + \sqrt{x^{2} - 1}}$$
The second derivative [src]
 /                  2               \ 
 |/         x      \             2  | 
 ||1 + ------------|            x   | 
 ||       _________|    -1 + -------| 
 ||      /       2 |               2| 
 |\    \/  -1 + x  /         -1 + x | 
-|------------------- + ------------| 
 |         _________       _________| 
 |        /       2       /       2 | 
 \  x + \/  -1 + x      \/  -1 + x  / 
--------------------------------------
                  _________           
                 /       2            
           x + \/  -1 + x             
$$- \frac{\frac{\frac{x^{2}}{x^{2} - 1} - 1}{\sqrt{x^{2} - 1}} + \frac{\left(\frac{x}{\sqrt{x^{2} - 1}} + 1\right)^{2}}{x + \sqrt{x^{2} - 1}}}{x + \sqrt{x^{2} - 1}}$$
The third derivative [src]
                    3                                             /         2  \
  /         x      \        /         2  \     /         x      \ |        x   |
2*|1 + ------------|        |        x   |   3*|1 + ------------|*|-1 + -------|
  |       _________|    3*x*|-1 + -------|     |       _________| |           2|
  |      /       2 |        |           2|     |      /       2 | \     -1 + x /
  \    \/  -1 + x  /        \     -1 + x /     \    \/  -1 + x  /               
--------------------- + ------------------ + -----------------------------------
                   2                3/2           _________ /       _________\  
 /       _________\        /      2\             /       2  |      /       2 |  
 |      /       2 |        \-1 + x /           \/  -1 + x  *\x + \/  -1 + x  /  
 \x + \/  -1 + x  /                                                             
--------------------------------------------------------------------------------
                                       _________                                
                                      /       2                                 
                                x + \/  -1 + x                                  
$$\frac{\frac{3 x \left(\frac{x^{2}}{x^{2} - 1} - 1\right)}{\left(x^{2} - 1\right)^{\frac{3}{2}}} + \frac{3 \left(\frac{x}{\sqrt{x^{2} - 1}} + 1\right) \left(\frac{x^{2}}{x^{2} - 1} - 1\right)}{\left(x + \sqrt{x^{2} - 1}\right) \sqrt{x^{2} - 1}} + \frac{2 \left(\frac{x}{\sqrt{x^{2} - 1}} + 1\right)^{3}}{\left(x + \sqrt{x^{2} - 1}\right)^{2}}}{x + \sqrt{x^{2} - 1}}$$
The graph
Derivative of ln(x+sqrt(x^2-1))