/ ________\ | / 2 | log\x + \/ x - 1 /
log(x + sqrt(x^2 - 1))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
x
1 + -----------
________
/ 2
\/ x - 1
---------------
________
/ 2
x + \/ x - 1
/ 2 \
|/ x \ 2 |
||1 + ------------| x |
|| _________| -1 + -------|
|| / 2 | 2|
|\ \/ -1 + x / -1 + x |
-|------------------- + ------------|
| _________ _________|
| / 2 / 2 |
\ x + \/ -1 + x \/ -1 + x /
--------------------------------------
_________
/ 2
x + \/ -1 + x
3 / 2 \
/ x \ / 2 \ / x \ | x |
2*|1 + ------------| | x | 3*|1 + ------------|*|-1 + -------|
| _________| 3*x*|-1 + -------| | _________| | 2|
| / 2 | | 2| | / 2 | \ -1 + x /
\ \/ -1 + x / \ -1 + x / \ \/ -1 + x /
--------------------- + ------------------ + -----------------------------------
2 3/2 _________ / _________\
/ _________\ / 2\ / 2 | / 2 |
| / 2 | \-1 + x / \/ -1 + x *\x + \/ -1 + x /
\x + \/ -1 + x /
--------------------------------------------------------------------------------
_________
/ 2
x + \/ -1 + x