Mister Exam

Derivative of ln(x+1/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /    1\
log|x + -|
   \    x/
$$\log{\left(x + \frac{1}{x} \right)}$$
log(x + 1/x)
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. Apply the power rule: goes to

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    1 
1 - --
     2
    x 
------
    1 
x + - 
    x 
$$\frac{1 - \frac{1}{x^{2}}}{x + \frac{1}{x}}$$
The second derivative [src]
             2
     /    1 \ 
     |1 - --| 
     |     2| 
2    \    x / 
-- - ---------
 3         1  
x      x + -  
           x  
--------------
        1     
    x + -     
        x     
$$\frac{- \frac{\left(1 - \frac{1}{x^{2}}\right)^{2}}{x + \frac{1}{x}} + \frac{2}{x^{3}}}{x + \frac{1}{x}}$$
The third derivative [src]
  /               3             \
  |       /    1 \      /    1 \|
  |       |1 - --|    3*|1 - --||
  |       |     2|      |     2||
  |  3    \    x /      \    x /|
2*|- -- + --------- - ----------|
  |   4           2    3 /    1\|
  |  x     /    1\    x *|x + -||
  |        |x + -|       \    x/|
  \        \    x/              /
---------------------------------
                  1              
              x + -              
                  x              
$$\frac{2 \left(\frac{\left(1 - \frac{1}{x^{2}}\right)^{3}}{\left(x + \frac{1}{x}\right)^{2}} - \frac{3 \left(1 - \frac{1}{x^{2}}\right)}{x^{3} \left(x + \frac{1}{x}\right)} - \frac{3}{x^{4}}\right)}{x + \frac{1}{x}}$$
The graph
Derivative of ln(x+1/x)