Mister Exam

Other calculators

Derivative of ln(x)/(sqrt(x+2*x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   log(x)  
-----------
  _________
\/ x + 2*x 
$$\frac{\log{\left(x \right)}}{\sqrt{x + 2 x}}$$
log(x)/sqrt(x + 2*x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of is .

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
      1            3*log(x)   
------------- - --------------
    _________              3/2
x*\/ x + 2*x    2*(x + 2*x)   
$$- \frac{3 \log{\left(x \right)}}{2 \left(x + 2 x\right)^{\frac{3}{2}}} + \frac{1}{x \sqrt{x + 2 x}}$$
The second derivative [src]
  ___                
\/ 3 *(-8 + 3*log(x))
---------------------
           5/2       
       12*x          
$$\frac{\sqrt{3} \left(3 \log{\left(x \right)} - 8\right)}{12 x^{\frac{5}{2}}}$$
The third derivative [src]
  ___                 
\/ 3 *(46 - 15*log(x))
----------------------
           7/2        
       24*x           
$$\frac{\sqrt{3} \left(46 - 15 \log{\left(x \right)}\right)}{24 x^{\frac{7}{2}}}$$