Mister Exam

Other calculators

Derivative of ln(x)/(sqrt(x+2*x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   log(x)  
-----------
  _________
\/ x + 2*x 
log(x)x+2x\frac{\log{\left(x \right)}}{\sqrt{x + 2 x}}
log(x)/sqrt(x + 2*x)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=log(x)f{\left(x \right)} = \log{\left(x \right)} and g(x)=3xg{\left(x \right)} = \sqrt{3} \sqrt{x}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: x\sqrt{x} goes to 12x\frac{1}{2 \sqrt{x}}

      So, the result is: 32x\frac{\sqrt{3}}{2 \sqrt{x}}

    Now plug in to the quotient rule:

    3log(x)2x+3x3x\frac{- \frac{\sqrt{3} \log{\left(x \right)}}{2 \sqrt{x}} + \frac{\sqrt{3}}{\sqrt{x}}}{3 x}

  2. Now simplify:

    3(2log(x))6x32\frac{\sqrt{3} \left(2 - \log{\left(x \right)}\right)}{6 x^{\frac{3}{2}}}


The answer is:

3(2log(x))6x32\frac{\sqrt{3} \left(2 - \log{\left(x \right)}\right)}{6 x^{\frac{3}{2}}}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
      1            3*log(x)   
------------- - --------------
    _________              3/2
x*\/ x + 2*x    2*(x + 2*x)   
3log(x)2(x+2x)32+1xx+2x- \frac{3 \log{\left(x \right)}}{2 \left(x + 2 x\right)^{\frac{3}{2}}} + \frac{1}{x \sqrt{x + 2 x}}
The second derivative [src]
  ___                
\/ 3 *(-8 + 3*log(x))
---------------------
           5/2       
       12*x          
3(3log(x)8)12x52\frac{\sqrt{3} \left(3 \log{\left(x \right)} - 8\right)}{12 x^{\frac{5}{2}}}
The third derivative [src]
  ___                 
\/ 3 *(46 - 15*log(x))
----------------------
           7/2        
       24*x           
3(4615log(x))24x72\frac{\sqrt{3} \left(46 - 15 \log{\left(x \right)}\right)}{24 x^{\frac{7}{2}}}