Mister Exam

Other calculators

Derivative of ln(x)/(1+x)+arcsinx/2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(x)   asin(x)
------ + -------
1 + x       2   
$$\frac{\operatorname{asin}{\left(x \right)}}{2} + \frac{\log{\left(x \right)}}{x + 1}$$
log(x)/(1 + x) + asin(x)/2
The graph
The first derivative [src]
      1             1        log(x) 
------------- + --------- - --------
     ________   x*(1 + x)          2
    /      2                (1 + x) 
2*\/  1 - x                         
$$- \frac{\log{\left(x \right)}}{\left(x + 1\right)^{2}} + \frac{1}{2 \sqrt{1 - x^{2}}} + \frac{1}{x \left(x + 1\right)}$$
The second derivative [src]
      x             1            2        2*log(x)
------------- - ---------- - ---------- + --------
          3/2    2                    2          3
  /     2\      x *(1 + x)   x*(1 + x)    (1 + x) 
2*\1 - x /                                        
$$\frac{x}{2 \left(1 - x^{2}\right)^{\frac{3}{2}}} + \frac{2 \log{\left(x \right)}}{\left(x + 1\right)^{3}} - \frac{2}{x \left(x + 1\right)^{2}} - \frac{1}{x^{2} \left(x + 1\right)}$$
The third derivative [src]
                                                                           2    
      1         6*log(x)       2             3            6             3*x     
------------- - -------- + ---------- + ----------- + ---------- + -------------
          3/2          4    3            2        2            3             5/2
  /     2\      (1 + x)    x *(1 + x)   x *(1 + x)    x*(1 + x)      /     2\   
2*\1 - x /                                                         2*\1 - x /   
$$\frac{3 x^{2}}{2 \left(1 - x^{2}\right)^{\frac{5}{2}}} - \frac{6 \log{\left(x \right)}}{\left(x + 1\right)^{4}} + \frac{1}{2 \left(1 - x^{2}\right)^{\frac{3}{2}}} + \frac{6}{x \left(x + 1\right)^{3}} + \frac{3}{x^{2} \left(x + 1\right)^{2}} + \frac{2}{x^{3} \left(x + 1\right)}$$