Mister Exam

Other calculators

Derivative of ln((2-(x)^3)/3*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /     3  \
   |2 - x   |
log|------*x|
   \  3     /
$$\log{\left(x \frac{2 - x^{3}}{3} \right)}$$
log(((2 - x^3)/3)*x)
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Apply the product rule:

        ; to find :

        1. Apply the power rule: goes to

        ; to find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        The result is:

      To find :

      1. The derivative of the constant is zero.

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
  /            3\
  |   3   2 - x |
3*|- x  + ------|
  \         3   /
-----------------
      /     3\   
    x*\2 - x /   
$$\frac{3 \left(- x^{3} + \frac{2 - x^{3}}{3}\right)}{x \left(2 - x^{3}\right)}$$
The second derivative [src]
  /              3       /        3\\
  |      -1 + 2*x    3*x*\-1 + 2*x /|
2*|6*x - --------- - ---------------|
  |           2                3    |
  \          x           -2 + x     /
-------------------------------------
                     3               
               -2 + x                
$$\frac{2 \left(6 x - \frac{3 x \left(2 x^{3} - 1\right)}{x^{3} - 2} - \frac{2 x^{3} - 1}{x^{2}}\right)}{x^{3} - 2}$$
The third derivative [src]
  /        3        3       3 /        3\\
  |-1 + 2*x     18*x     9*x *\-1 + 2*x /|
4*|--------- - ------- + ----------------|
  |     3            3               2   |
  |    x       -2 + x       /      3\    |
  \                         \-2 + x /    /
------------------------------------------
                       3                  
                 -2 + x                   
$$\frac{4 \left(- \frac{18 x^{3}}{x^{3} - 2} + \frac{9 x^{3} \left(2 x^{3} - 1\right)}{\left(x^{3} - 2\right)^{2}} + \frac{2 x^{3} - 1}{x^{3}}\right)}{x^{3} - 2}$$