Mister Exam

Other calculators

Derivative of (ln^2)(sin(7^x+2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2       / x    \
log (x)*sin\7  + 2/
log(x)2sin(7x+2)\log{\left(x \right)}^{2} \sin{\left(7^{x} + 2 \right)}
log(x)^2*sin(7^x + 2)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=log(x)2f{\left(x \right)} = \log{\left(x \right)}^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=log(x)u = \log{\left(x \right)}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddxlog(x)\frac{d}{d x} \log{\left(x \right)}:

      1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

      The result of the chain rule is:

      2log(x)x\frac{2 \log{\left(x \right)}}{x}

    g(x)=sin(7x+2)g{\left(x \right)} = \sin{\left(7^{x} + 2 \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=7x+2u = 7^{x} + 2.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx(7x+2)\frac{d}{d x} \left(7^{x} + 2\right):

      1. Differentiate 7x+27^{x} + 2 term by term:

        1. ddx7x=7xlog(7)\frac{d}{d x} 7^{x} = 7^{x} \log{\left(7 \right)}

        2. The derivative of the constant 22 is zero.

        The result is: 7xlog(7)7^{x} \log{\left(7 \right)}

      The result of the chain rule is:

      7xlog(7)cos(7x+2)7^{x} \log{\left(7 \right)} \cos{\left(7^{x} + 2 \right)}

    The result is: 7xlog(7)log(x)2cos(7x+2)+2log(x)sin(7x+2)x7^{x} \log{\left(7 \right)} \log{\left(x \right)}^{2} \cos{\left(7^{x} + 2 \right)} + \frac{2 \log{\left(x \right)} \sin{\left(7^{x} + 2 \right)}}{x}

  2. Now simplify:

    (7xxlog(7)log(x)cos(7x+2)+2sin(7x+2))log(x)x\frac{\left(7^{x} x \log{\left(7 \right)} \log{\left(x \right)} \cos{\left(7^{x} + 2 \right)} + 2 \sin{\left(7^{x} + 2 \right)}\right) \log{\left(x \right)}}{x}


The answer is:

(7xxlog(7)log(x)cos(7x+2)+2sin(7x+2))log(x)x\frac{\left(7^{x} x \log{\left(7 \right)} \log{\left(x \right)} \cos{\left(7^{x} + 2 \right)} + 2 \sin{\left(7^{x} + 2 \right)}\right) \log{\left(x \right)}}{x}

The graph
02468-8-6-4-2-1010-50000000005000000000
The first derivative [src]
            / x    \                                
2*log(x)*sin\7  + 2/    x    2       / x    \       
-------------------- + 7 *log (x)*cos\7  + 2/*log(7)
         x                                          
7xlog(7)log(x)2cos(7x+2)+2log(x)sin(7x+2)x7^{x} \log{\left(7 \right)} \log{\left(x \right)}^{2} \cos{\left(7^{x} + 2 \right)} + \frac{2 \log{\left(x \right)} \sin{\left(7^{x} + 2 \right)}}{x}
The second derivative [src]
                     /     x\                                                            x    /     x\              
  2*(-1 + log(x))*sin\2 + 7 /    x    2       2    /     /     x\    x    /     x\\   4*7 *cos\2 + 7 /*log(7)*log(x)
- --------------------------- - 7 *log (7)*log (x)*\- cos\2 + 7 / + 7 *sin\2 + 7 // + ------------------------------
                2                                                                                   x               
               x                                                                                                    
7x(7xsin(7x+2)cos(7x+2))log(7)2log(x)2+47xlog(7)log(x)cos(7x+2)x2(log(x)1)sin(7x+2)x2- 7^{x} \left(7^{x} \sin{\left(7^{x} + 2 \right)} - \cos{\left(7^{x} + 2 \right)}\right) \log{\left(7 \right)}^{2} \log{\left(x \right)}^{2} + \frac{4 \cdot 7^{x} \log{\left(7 \right)} \log{\left(x \right)} \cos{\left(7^{x} + 2 \right)}}{x} - \frac{2 \left(\log{\left(x \right)} - 1\right) \sin{\left(7^{x} + 2 \right)}}{x^{2}}
The third derivative [src]
                     /     x\                                                                                 x    2    /     /     x\    x    /     x\\             x                  /     x\       
2*(-3 + 2*log(x))*sin\2 + 7 /    x    3       2    /     /     x\    2*x    /     x\      x    /     x\\   6*7 *log (7)*\- cos\2 + 7 / + 7 *sin\2 + 7 //*log(x)   6*7 *(-1 + log(x))*cos\2 + 7 /*log(7)
----------------------------- - 7 *log (7)*log (x)*\- cos\2 + 7 / + 7   *cos\2 + 7 / + 3*7 *sin\2 + 7 // - ---------------------------------------------------- - -------------------------------------
               3                                                                                                                    x                                                2                 
              x                                                                                                                                                                     x                  
7x(72xcos(7x+2)+37xsin(7x+2)cos(7x+2))log(7)3log(x)267x(7xsin(7x+2)cos(7x+2))log(7)2log(x)x67x(log(x)1)log(7)cos(7x+2)x2+2(2log(x)3)sin(7x+2)x3- 7^{x} \left(7^{2 x} \cos{\left(7^{x} + 2 \right)} + 3 \cdot 7^{x} \sin{\left(7^{x} + 2 \right)} - \cos{\left(7^{x} + 2 \right)}\right) \log{\left(7 \right)}^{3} \log{\left(x \right)}^{2} - \frac{6 \cdot 7^{x} \left(7^{x} \sin{\left(7^{x} + 2 \right)} - \cos{\left(7^{x} + 2 \right)}\right) \log{\left(7 \right)}^{2} \log{\left(x \right)}}{x} - \frac{6 \cdot 7^{x} \left(\log{\left(x \right)} - 1\right) \log{\left(7 \right)} \cos{\left(7^{x} + 2 \right)}}{x^{2}} + \frac{2 \left(2 \log{\left(x \right)} - 3\right) \sin{\left(7^{x} + 2 \right)}}{x^{3}}