Mister Exam

Other calculators

Derivative of (ln^2)*(tg*10*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2             
log (x)*tan(10*x)
$$\log{\left(x \right)}^{2} \tan{\left(10 x \right)}$$
log(x)^2*tan(10*x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of is .

      The result of the chain rule is:

    ; to find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   2    /           2      \   2*log(x)*tan(10*x)
log (x)*\10 + 10*tan (10*x)/ + ------------------
                                       x         
$$\left(10 \tan^{2}{\left(10 x \right)} + 10\right) \log{\left(x \right)}^{2} + \frac{2 \log{\left(x \right)} \tan{\left(10 x \right)}}{x}$$
The second derivative [src]
  /                               /       2      \                                                \
  |  (-1 + log(x))*tan(10*x)   20*\1 + tan (10*x)/*log(x)          2    /       2      \          |
2*|- ----------------------- + -------------------------- + 100*log (x)*\1 + tan (10*x)/*tan(10*x)|
  |              2                         x                                                      |
  \             x                                                                                 /
$$2 \left(100 \left(\tan^{2}{\left(10 x \right)} + 1\right) \log{\left(x \right)}^{2} \tan{\left(10 x \right)} + \frac{20 \left(\tan^{2}{\left(10 x \right)} + 1\right) \log{\left(x \right)}}{x} - \frac{\left(\log{\left(x \right)} - 1\right) \tan{\left(10 x \right)}}{x^{2}}\right)$$
The third derivative [src]
  /                               /       2      \                                                                        /       2      \                 \
  |(-3 + 2*log(x))*tan(10*x)   30*\1 + tan (10*x)/*(-1 + log(x))           2    /       2      \ /         2      \   600*\1 + tan (10*x)/*log(x)*tan(10*x)|
2*|------------------------- - --------------------------------- + 1000*log (x)*\1 + tan (10*x)/*\1 + 3*tan (10*x)/ + -------------------------------------|
  |             3                               2                                                                                       x                  |
  \            x                               x                                                                                                           /
$$2 \left(1000 \left(\tan^{2}{\left(10 x \right)} + 1\right) \left(3 \tan^{2}{\left(10 x \right)} + 1\right) \log{\left(x \right)}^{2} + \frac{600 \left(\tan^{2}{\left(10 x \right)} + 1\right) \log{\left(x \right)} \tan{\left(10 x \right)}}{x} - \frac{30 \left(\log{\left(x \right)} - 1\right) \left(\tan^{2}{\left(10 x \right)} + 1\right)}{x^{2}} + \frac{\left(2 \log{\left(x \right)} - 3\right) \tan{\left(10 x \right)}}{x^{3}}\right)$$