2 /x\
log (x)*cos|-|
\4/
log(x)^2*cos(x/4)
Apply the product rule:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of is .
The result of the chain rule is:
; to find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
2 /x\ /x\
log (x)*sin|-| 2*cos|-|*log(x)
\4/ \4/
- -------------- + ---------------
4 x
/ 2 /x\ /x\ /x\\ |log (x)*cos|-| log(x)*sin|-| 2*(-1 + log(x))*cos|-|| | \4/ \4/ \4/| -|-------------- + ------------- + ----------------------| | 16 x 2 | \ x /
2 /x\ /x\ /x\ /x\
log (x)*sin|-| 2*(-3 + 2*log(x))*cos|-| 3*cos|-|*log(x) 3*(-1 + log(x))*sin|-|
\4/ \4/ \4/ \4/
-------------- + ------------------------ - --------------- + ----------------------
64 3 8*x 2
x 2*x