Mister Exam

Other calculators

Derivative of ln^2*cos(x/4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2       /x\
log (x)*cos|-|
           \4/
$$\log{\left(x \right)}^{2} \cos{\left(\frac{x}{4} \right)}$$
log(x)^2*cos(x/4)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of is .

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     2       /x\        /x\       
  log (x)*sin|-|   2*cos|-|*log(x)
             \4/        \4/       
- -------------- + ---------------
        4                 x       
$$- \frac{\log{\left(x \right)}^{2} \sin{\left(\frac{x}{4} \right)}}{4} + \frac{2 \log{\left(x \right)} \cos{\left(\frac{x}{4} \right)}}{x}$$
The second derivative [src]
 /   2       /x\             /x\                      /x\\
 |log (x)*cos|-|   log(x)*sin|-|   2*(-1 + log(x))*cos|-||
 |           \4/             \4/                      \4/|
-|-------------- + ------------- + ----------------------|
 |      16               x                    2          |
 \                                           x           /
$$- (\frac{\log{\left(x \right)}^{2} \cos{\left(\frac{x}{4} \right)}}{16} + \frac{\log{\left(x \right)} \sin{\left(\frac{x}{4} \right)}}{x} + \frac{2 \left(\log{\left(x \right)} - 1\right) \cos{\left(\frac{x}{4} \right)}}{x^{2}})$$
The third derivative [src]
   2       /x\                        /x\        /x\                             /x\
log (x)*sin|-|   2*(-3 + 2*log(x))*cos|-|   3*cos|-|*log(x)   3*(-1 + log(x))*sin|-|
           \4/                        \4/        \4/                             \4/
-------------- + ------------------------ - --------------- + ----------------------
      64                     3                    8*x                     2         
                            x                                          2*x          
$$\frac{\log{\left(x \right)}^{2} \sin{\left(\frac{x}{4} \right)}}{64} - \frac{3 \log{\left(x \right)} \cos{\left(\frac{x}{4} \right)}}{8 x} + \frac{3 \left(\log{\left(x \right)} - 1\right) \sin{\left(\frac{x}{4} \right)}}{2 x^{2}} + \frac{2 \left(2 \log{\left(x \right)} - 3\right) \cos{\left(\frac{x}{4} \right)}}{x^{3}}$$