2 log (cos(x))
log(cos(x))^2
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of cosine is negative sine:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
-2*log(cos(x))*sin(x)
---------------------
cos(x)
/ 2 2 \ | sin (x) sin (x)*log(cos(x))| 2*|-log(cos(x)) + ------- - -------------------| | 2 2 | \ cos (x) cos (x) /
/ 2 2 \
| 3*sin (x) 2*sin (x)*log(cos(x))|
2*|3 - 2*log(cos(x)) + --------- - ---------------------|*sin(x)
| 2 2 |
\ cos (x) cos (x) /
----------------------------------------------------------------
cos(x)