Mister Exam

Other calculators

Derivative of ln^3(x)+2^√x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
             ___
   3       \/ x 
log (x) + 2     
$$2^{\sqrt{x}} + \log{\left(x \right)}^{3}$$
log(x)^3 + 2^(sqrt(x))
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of is .

      The result of the chain rule is:

    4. Let .

    5. Then, apply the chain rule. Multiply by :

      1. Apply the power rule: goes to

      The result of the chain rule is:

    The result is:


The answer is:

The graph
The first derivative [src]
               ___       
     2       \/ x        
3*log (x)   2     *log(2)
--------- + -------------
    x              ___   
               2*\/ x    
$$\frac{2^{\sqrt{x}} \log{\left(2 \right)}}{2 \sqrt{x}} + \frac{3 \log{\left(x \right)}^{2}}{x}$$
The second derivative [src]
                            ___             ___        
       2                  \/ x            \/ x     2   
  3*log (x)   6*log(x)   2     *log(2)   2     *log (2)
- --------- + -------- - ------------- + --------------
       2          2             3/2           4*x      
      x          x           4*x                       
$$\frac{2^{\sqrt{x}} \log{\left(2 \right)}^{2}}{4 x} - \frac{2^{\sqrt{x}} \log{\left(2 \right)}}{4 x^{\frac{3}{2}}} - \frac{3 \log{\left(x \right)}^{2}}{x^{2}} + \frac{6 \log{\left(x \right)}}{x^{2}}$$
The third derivative [src]
                                  ___              ___                ___       
                      2         \/ x     2       \/ x     3         \/ x        
6    18*log(x)   6*log (x)   3*2     *log (2)   2     *log (2)   3*2     *log(2)
-- - --------- + --------- - ---------------- + -------------- + ---------------
 3        3           3               2                3/2               5/2    
x        x           x             8*x              8*x               8*x       
$$- \frac{3 \cdot 2^{\sqrt{x}} \log{\left(2 \right)}^{2}}{8 x^{2}} + \frac{2^{\sqrt{x}} \log{\left(2 \right)}^{3}}{8 x^{\frac{3}{2}}} + \frac{3 \cdot 2^{\sqrt{x}} \log{\left(2 \right)}}{8 x^{\frac{5}{2}}} + \frac{6 \log{\left(x \right)}^{2}}{x^{3}} - \frac{18 \log{\left(x \right)}}{x^{3}} + \frac{6}{x^{3}}$$