Mister Exam

Other calculators


ln^4(x/5)

Derivative of ln^4(x/5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   4/x\
log |-|
    \5/
$$\log{\left(\frac{x}{5} \right)}^{4}$$
d /   4/x\\
--|log |-||
dx\    \5//
$$\frac{d}{d x} \log{\left(\frac{x}{5} \right)}^{4}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     3/x\
4*log |-|
      \5/
---------
    x    
$$\frac{4 \log{\left(\frac{x}{5} \right)}^{3}}{x}$$
The second derivative [src]
     2/x\ /       /x\\
4*log |-|*|3 - log|-||
      \5/ \       \5//
----------------------
           2          
          x           
$$\frac{4 \cdot \left(3 - \log{\left(\frac{x}{5} \right)}\right) \log{\left(\frac{x}{5} \right)}^{2}}{x^{2}}$$
The third derivative [src]
  /         /x\        2/x\\    /x\
4*|6 - 9*log|-| + 2*log |-||*log|-|
  \         \5/         \5//    \5/
-----------------------------------
                  3                
                 x                 
$$\frac{4 \cdot \left(2 \log{\left(\frac{x}{5} \right)}^{2} - 9 \log{\left(\frac{x}{5} \right)} + 6\right) \log{\left(\frac{x}{5} \right)}}{x^{3}}$$
The graph
Derivative of ln^4(x/5)