Mister Exam

Other calculators


ln(tg3x+x^3)

Derivative of ln(tg3x+x^3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /            3\
log\tan(3*x) + x /
log(x3+tan(3x))\log{\left(x^{3} + \tan{\left(3 x \right)} \right)}
d /   /            3\\
--\log\tan(3*x) + x //
dx                    
ddxlog(x3+tan(3x))\frac{d}{d x} \log{\left(x^{3} + \tan{\left(3 x \right)} \right)}
Detail solution
  1. Let u=x3+tan(3x)u = x^{3} + \tan{\left(3 x \right)}.

  2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

  3. Then, apply the chain rule. Multiply by ddx(x3+tan(3x))\frac{d}{d x} \left(x^{3} + \tan{\left(3 x \right)}\right):

    1. Differentiate x3+tan(3x)x^{3} + \tan{\left(3 x \right)} term by term:

      1. Rewrite the function to be differentiated:

        tan(3x)=sin(3x)cos(3x)\tan{\left(3 x \right)} = \frac{\sin{\left(3 x \right)}}{\cos{\left(3 x \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=sin(3x)f{\left(x \right)} = \sin{\left(3 x \right)} and g(x)=cos(3x)g{\left(x \right)} = \cos{\left(3 x \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Let u=3xu = 3 x.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 33

          The result of the chain rule is:

          3cos(3x)3 \cos{\left(3 x \right)}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Let u=3xu = 3 x.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 33

          The result of the chain rule is:

          3sin(3x)- 3 \sin{\left(3 x \right)}

        Now plug in to the quotient rule:

        3sin2(3x)+3cos2(3x)cos2(3x)\frac{3 \sin^{2}{\left(3 x \right)} + 3 \cos^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}}

      3. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

      The result is: 3x2+3sin2(3x)+3cos2(3x)cos2(3x)3 x^{2} + \frac{3 \sin^{2}{\left(3 x \right)} + 3 \cos^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}}

    The result of the chain rule is:

    3x2+3sin2(3x)+3cos2(3x)cos2(3x)x3+tan(3x)\frac{3 x^{2} + \frac{3 \sin^{2}{\left(3 x \right)} + 3 \cos^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}}}{x^{3} + \tan{\left(3 x \right)}}

  4. Now simplify:

    3(x2cos2(3x)+1)(x3+tan(3x))cos2(3x)\frac{3 \left(x^{2} \cos^{2}{\left(3 x \right)} + 1\right)}{\left(x^{3} + \tan{\left(3 x \right)}\right) \cos^{2}{\left(3 x \right)}}


The answer is:

3(x2cos2(3x)+1)(x3+tan(3x))cos2(3x)\frac{3 \left(x^{2} \cos^{2}{\left(3 x \right)} + 1\right)}{\left(x^{3} + \tan{\left(3 x \right)}\right) \cos^{2}{\left(3 x \right)}}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
       2        2     
3 + 3*x  + 3*tan (3*x)
----------------------
                3     
    tan(3*x) + x      
3x2+3tan2(3x)+3x3+tan(3x)\frac{3 x^{2} + 3 \tan^{2}{\left(3 x \right)} + 3}{x^{3} + \tan{\left(3 x \right)}}
The second derivative [src]
  /                            2                             \
  |        /     2      2     \                              |
  |      3*\1 + x  + tan (3*x)/      /       2     \         |
3*|2*x - ----------------------- + 6*\1 + tan (3*x)/*tan(3*x)|
  |            3                                             |
  \           x  + tan(3*x)                                  /
--------------------------------------------------------------
                         3                                    
                        x  + tan(3*x)                         
3(2x+6(tan2(3x)+1)tan(3x)3(x2+tan2(3x)+1)2x3+tan(3x))x3+tan(3x)\frac{3 \cdot \left(2 x + 6 \left(\tan^{2}{\left(3 x \right)} + 1\right) \tan{\left(3 x \right)} - \frac{3 \left(x^{2} + \tan^{2}{\left(3 x \right)} + 1\right)^{2}}{x^{3} + \tan{\left(3 x \right)}}\right)}{x^{3} + \tan{\left(3 x \right)}}
The third derivative [src]
  /                                               3                                                                                         \
  |                     2     /     2      2     \                                     /      /       2     \         \ /     2      2     \|
  |      /       2     \    9*\1 + x  + tan (3*x)/          2      /       2     \   9*\x + 3*\1 + tan (3*x)/*tan(3*x)/*\1 + x  + tan (3*x)/|
6*|1 + 9*\1 + tan (3*x)/  + ----------------------- + 18*tan (3*x)*\1 + tan (3*x)/ - -------------------------------------------------------|
  |                                            2                                                           3                                |
  |                             / 3           \                                                           x  + tan(3*x)                     |
  \                             \x  + tan(3*x)/                                                                                             /
---------------------------------------------------------------------------------------------------------------------------------------------
                                                                 3                                                                           
                                                                x  + tan(3*x)                                                                
6(9(x+3(tan2(3x)+1)tan(3x))(x2+tan2(3x)+1)x3+tan(3x)+9(tan2(3x)+1)2+18(tan2(3x)+1)tan2(3x)+1+9(x2+tan2(3x)+1)3(x3+tan(3x))2)x3+tan(3x)\frac{6 \left(- \frac{9 \left(x + 3 \left(\tan^{2}{\left(3 x \right)} + 1\right) \tan{\left(3 x \right)}\right) \left(x^{2} + \tan^{2}{\left(3 x \right)} + 1\right)}{x^{3} + \tan{\left(3 x \right)}} + 9 \left(\tan^{2}{\left(3 x \right)} + 1\right)^{2} + 18 \left(\tan^{2}{\left(3 x \right)} + 1\right) \tan^{2}{\left(3 x \right)} + 1 + \frac{9 \left(x^{2} + \tan^{2}{\left(3 x \right)} + 1\right)^{3}}{\left(x^{3} + \tan{\left(3 x \right)}\right)^{2}}\right)}{x^{3} + \tan{\left(3 x \right)}}
The graph
Derivative of ln(tg3x+x^3)