/ _______\ | / y - 1 | log| / ----- | \\/ y + 1 /
log(sqrt((y - 1)/(y + 1)))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
/ 1 y - 1 \
(y + 1)*|--------- - ----------|
|2*(y + 1) 2|
\ 2*(y + 1) /
--------------------------------
y - 1
/ -1 + y\ / 1 1 \
|-1 + ------|*|----- + ------|
\ 1 + y / \1 + y -1 + y/
------------------------------
2*(-1 + y)
/ -1 + y\ / 1 1 1 \
|-1 + ------|*|- -------- - --------- - ----------------|
\ 1 + y / | 2 2 (1 + y)*(-1 + y)|
\ (1 + y) (-1 + y) /
---------------------------------------------------------
-1 + y