Mister Exam

Other calculators

Derivative of ln(sqrt((y-1)/(y+1)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /    _______\
   |   / y - 1 |
log|  /  ----- |
   \\/   y + 1 /
$$\log{\left(\sqrt{\frac{y - 1}{y + 1}} \right)}$$
log(sqrt((y - 1)/(y + 1)))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. Apply the power rule: goes to

          The result is:

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. Apply the power rule: goes to

          The result is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        /    1         y - 1   \
(y + 1)*|--------- - ----------|
        |2*(y + 1)            2|
        \            2*(y + 1) /
--------------------------------
             y - 1              
$$\frac{\left(y + 1\right) \left(- \frac{y - 1}{2 \left(y + 1\right)^{2}} + \frac{1}{2 \left(y + 1\right)}\right)}{y - 1}$$
The second derivative [src]
/     -1 + y\ /  1       1   \
|-1 + ------|*|----- + ------|
\     1 + y / \1 + y   -1 + y/
------------------------------
          2*(-1 + y)          
$$\frac{\left(\frac{y - 1}{y + 1} - 1\right) \left(\frac{1}{y + 1} + \frac{1}{y - 1}\right)}{2 \left(y - 1\right)}$$
The third derivative [src]
/     -1 + y\ /     1           1              1        \
|-1 + ------|*|- -------- - --------- - ----------------|
\     1 + y / |         2           2   (1 + y)*(-1 + y)|
              \  (1 + y)    (-1 + y)                    /
---------------------------------------------------------
                          -1 + y                         
$$\frac{\left(\frac{y - 1}{y + 1} - 1\right) \left(- \frac{1}{\left(y + 1\right)^{2}} - \frac{1}{\left(y - 1\right) \left(y + 1\right)} - \frac{1}{\left(y - 1\right)^{2}}\right)}{y - 1}$$