Mister Exam

Other calculators

Derivative of ln(sqrt(e^x+1)-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   ________    \
   |  /  x         |
log\\/  E  + 1  - 1/
$$\log{\left(\sqrt{e^{x} + 1} - 1 \right)}$$
log(sqrt(E^x + 1) - 1)
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of is itself.

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      4. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
                x              
               e               
-------------------------------
     ________ /   ________    \
    /  x      |  /  x         |
2*\/  E  + 1 *\\/  E  + 1  - 1/
$$\frac{e^{x}}{2 \sqrt{e^{x} + 1} \left(\sqrt{e^{x} + 1} - 1\right)}$$
The second derivative [src]
/                    x                     x            \   
|     2             e                     e             |  x
|----------- - ----------- - ---------------------------|*e 
|   ________           3/2            /        ________\|   
|  /      x    /     x\      /     x\ |       /      x ||   
\\/  1 + e     \1 + e /      \1 + e /*\-1 + \/  1 + e  //   
------------------------------------------------------------
                      /        ________\                    
                      |       /      x |                    
                    4*\-1 + \/  1 + e  /                    
$$\frac{\left(\frac{2}{\sqrt{e^{x} + 1}} - \frac{e^{x}}{\left(e^{x} + 1\right)^{\frac{3}{2}}} - \frac{e^{x}}{\left(\sqrt{e^{x} + 1} - 1\right) \left(e^{x} + 1\right)}\right) e^{x}}{4 \left(\sqrt{e^{x} + 1} - 1\right)}$$
The third derivative [src]
/                     x            2*x                    x                              2*x                             2*x           \   
|     4            6*e          3*e                    6*e                            2*e                             3*e              |  x
|----------- - ----------- + ----------- - --------------------------- + ------------------------------- + ----------------------------|*e 
|   ________           3/2           5/2            /        ________\                                 2           2 /        ________\|   
|  /      x    /     x\      /     x\      /     x\ |       /      x |           3/2 /        ________\    /     x\  |       /      x ||   
|\/  1 + e     \1 + e /      \1 + e /      \1 + e /*\-1 + \/  1 + e  /   /     x\    |       /      x |    \1 + e / *\-1 + \/  1 + e  /|   
\                                                                        \1 + e /   *\-1 + \/  1 + e  /                                /   
-------------------------------------------------------------------------------------------------------------------------------------------
                                                              /        ________\                                                           
                                                              |       /      x |                                                           
                                                            8*\-1 + \/  1 + e  /                                                           
$$\frac{\left(\frac{4}{\sqrt{e^{x} + 1}} - \frac{6 e^{x}}{\left(e^{x} + 1\right)^{\frac{3}{2}}} + \frac{3 e^{2 x}}{\left(e^{x} + 1\right)^{\frac{5}{2}}} - \frac{6 e^{x}}{\left(\sqrt{e^{x} + 1} - 1\right) \left(e^{x} + 1\right)} + \frac{3 e^{2 x}}{\left(\sqrt{e^{x} + 1} - 1\right) \left(e^{x} + 1\right)^{2}} + \frac{2 e^{2 x}}{\left(\sqrt{e^{x} + 1} - 1\right)^{2} \left(e^{x} + 1\right)^{\frac{3}{2}}}\right) e^{x}}{8 \left(\sqrt{e^{x} + 1} - 1\right)}$$