/ ________ \ | / x | log\\/ E + 1 - 1/
log(sqrt(E^x + 1) - 1)
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of is itself.
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
x e ------------------------------- ________ / ________ \ / x | / x | 2*\/ E + 1 *\\/ E + 1 - 1/
/ x x \ | 2 e e | x |----------- - ----------- - ---------------------------|*e | ________ 3/2 / ________\| | / x / x\ / x\ | / x || \\/ 1 + e \1 + e / \1 + e /*\-1 + \/ 1 + e // ------------------------------------------------------------ / ________\ | / x | 4*\-1 + \/ 1 + e /
/ x 2*x x 2*x 2*x \ | 4 6*e 3*e 6*e 2*e 3*e | x |----------- - ----------- + ----------- - --------------------------- + ------------------------------- + ----------------------------|*e | ________ 3/2 5/2 / ________\ 2 2 / ________\| | / x / x\ / x\ / x\ | / x | 3/2 / ________\ / x\ | / x || |\/ 1 + e \1 + e / \1 + e / \1 + e /*\-1 + \/ 1 + e / / x\ | / x | \1 + e / *\-1 + \/ 1 + e /| \ \1 + e / *\-1 + \/ 1 + e / / ------------------------------------------------------------------------------------------------------------------------------------------- / ________\ | / x | 8*\-1 + \/ 1 + e /