/ /x + 1\\ log|sin|-----|| \ \ x //
log(sin((x + 1)/x))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
To find :
Apply the power rule: goes to
Now plug in to the quotient rule:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
/1 x + 1\ /x + 1\ |- - -----|*cos|-----| |x 2 | \ x / \ x / ---------------------- /x + 1\ sin|-----| \ x /
/ /1 + x\ 2/1 + x\ / 1 + x\\ | 2*cos|-----| cos |-----|*|1 - -----|| / 1 + x\ | 1 + x \ x / \ x / \ x /| -|1 - -----|*|1 - ----- + ------------ + -----------------------| \ x / | x /1 + x\ 2/1 + x\ | | sin|-----| sin |-----| | \ \ x / \ x / / ------------------------------------------------------------------ 2 x
/ 2 2 \ | /1 + x\ / 1 + x\ 3/1 + x\ / 1 + x\ /1 + x\ 2/1 + x\ / 1 + x\| | 3*cos|-----| |1 - -----| *cos |-----| |1 - -----| *cos|-----| 3*cos |-----|*|1 - -----|| / 1 + x\ | 3*(1 + x) \ x / \ x / \ x / \ x / \ x / \ x / \ x /| 2*|1 - -----|*|3 - --------- + ------------ + ------------------------ + ----------------------- + -------------------------| \ x / | x /1 + x\ 3/1 + x\ /1 + x\ 2/1 + x\ | | sin|-----| sin |-----| sin|-----| sin |-----| | \ \ x / \ x / \ x / \ x / / ----------------------------------------------------------------------------------------------------------------------------- 3 x