Mister Exam

Derivative of ln(sin((x+1)/x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   /x + 1\\
log|sin|-----||
   \   \  x  //
$$\log{\left(\sin{\left(\frac{x + 1}{x} \right)} \right)}$$
log(sin((x + 1)/x))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. Apply the power rule: goes to

          The result is:

        To find :

        1. Apply the power rule: goes to

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
/1   x + 1\    /x + 1\
|- - -----|*cos|-----|
|x      2 |    \  x  /
\      x  /           
----------------------
         /x + 1\      
      sin|-----|      
         \  x  /      
$$\frac{\left(\frac{1}{x} - \frac{x + 1}{x^{2}}\right) \cos{\left(\frac{x + 1}{x} \right)}}{\sin{\left(\frac{x + 1}{x} \right)}}$$
The second derivative [src]
             /                 /1 + x\      2/1 + x\ /    1 + x\\ 
             |            2*cos|-----|   cos |-----|*|1 - -----|| 
 /    1 + x\ |    1 + x        \  x  /       \  x  / \      x  /| 
-|1 - -----|*|1 - ----- + ------------ + -----------------------| 
 \      x  / |      x         /1 + x\             2/1 + x\      | 
             |             sin|-----|          sin |-----|      | 
             \                \  x  /              \  x  /      / 
------------------------------------------------------------------
                                 2                                
                                x                                 
$$- \frac{\left(1 - \frac{x + 1}{x}\right) \left(\frac{\left(1 - \frac{x + 1}{x}\right) \cos^{2}{\left(\frac{x + 1}{x} \right)}}{\sin^{2}{\left(\frac{x + 1}{x} \right)}} + 1 + \frac{2 \cos{\left(\frac{x + 1}{x} \right)}}{\sin{\left(\frac{x + 1}{x} \right)}} - \frac{x + 1}{x}\right)}{x^{2}}$$
The third derivative [src]
              /                                          2                          2                                       \
              |                     /1 + x\   /    1 + x\     3/1 + x\   /    1 + x\     /1 + x\        2/1 + x\ /    1 + x\|
              |                3*cos|-----|   |1 - -----| *cos |-----|   |1 - -----| *cos|-----|   3*cos |-----|*|1 - -----||
  /    1 + x\ |    3*(1 + x)        \  x  /   \      x  /      \  x  /   \      x  /     \  x  /         \  x  / \      x  /|
2*|1 - -----|*|3 - --------- + ------------ + ------------------------ + ----------------------- + -------------------------|
  \      x  / |        x           /1 + x\             3/1 + x\                    /1 + x\                   2/1 + x\       |
              |                 sin|-----|          sin |-----|                 sin|-----|                sin |-----|       |
              \                    \  x  /              \  x  /                    \  x  /                    \  x  /       /
-----------------------------------------------------------------------------------------------------------------------------
                                                               3                                                             
                                                              x                                                              
$$\frac{2 \left(1 - \frac{x + 1}{x}\right) \left(\frac{\left(1 - \frac{x + 1}{x}\right)^{2} \cos{\left(\frac{x + 1}{x} \right)}}{\sin{\left(\frac{x + 1}{x} \right)}} + \frac{\left(1 - \frac{x + 1}{x}\right)^{2} \cos^{3}{\left(\frac{x + 1}{x} \right)}}{\sin^{3}{\left(\frac{x + 1}{x} \right)}} + \frac{3 \left(1 - \frac{x + 1}{x}\right) \cos^{2}{\left(\frac{x + 1}{x} \right)}}{\sin^{2}{\left(\frac{x + 1}{x} \right)}} + 3 + \frac{3 \cos{\left(\frac{x + 1}{x} \right)}}{\sin{\left(\frac{x + 1}{x} \right)}} - \frac{3 \left(x + 1\right)}{x}\right)}{x^{3}}$$