/ /x + 1\\ log|sin|-----|| \ \ x //
log(sin((x + 1)/x))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
To find :
Apply the power rule: goes to
Now plug in to the quotient rule:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
/1 x + 1\ /x + 1\
|- - -----|*cos|-----|
|x 2 | \ x /
\ x /
----------------------
/x + 1\
sin|-----|
\ x /
/ /1 + x\ 2/1 + x\ / 1 + x\\
| 2*cos|-----| cos |-----|*|1 - -----||
/ 1 + x\ | 1 + x \ x / \ x / \ x /|
-|1 - -----|*|1 - ----- + ------------ + -----------------------|
\ x / | x /1 + x\ 2/1 + x\ |
| sin|-----| sin |-----| |
\ \ x / \ x / /
------------------------------------------------------------------
2
x
/ 2 2 \
| /1 + x\ / 1 + x\ 3/1 + x\ / 1 + x\ /1 + x\ 2/1 + x\ / 1 + x\|
| 3*cos|-----| |1 - -----| *cos |-----| |1 - -----| *cos|-----| 3*cos |-----|*|1 - -----||
/ 1 + x\ | 3*(1 + x) \ x / \ x / \ x / \ x / \ x / \ x / \ x /|
2*|1 - -----|*|3 - --------- + ------------ + ------------------------ + ----------------------- + -------------------------|
\ x / | x /1 + x\ 3/1 + x\ /1 + x\ 2/1 + x\ |
| sin|-----| sin |-----| sin|-----| sin |-----| |
\ \ x / \ x / \ x / \ x / /
-----------------------------------------------------------------------------------------------------------------------------
3
x