Mister Exam

Other calculators

Derivative of lnsin((x-4)/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   /x - 4\\
log|sin|-----||
   \   \  x  //
$$\log{\left(\sin{\left(\frac{x - 4}{x} \right)} \right)}$$
log(sin((x - 4)/x))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. Apply the power rule: goes to

          The result is:

        To find :

        1. Apply the power rule: goes to

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
/1   x - 4\    /x - 4\
|- - -----|*cos|-----|
|x      2 |    \  x  /
\      x  /           
----------------------
         /x - 4\      
      sin|-----|      
         \  x  /      
$$\frac{\left(\frac{1}{x} - \frac{x - 4}{x^{2}}\right) \cos{\left(\frac{x - 4}{x} \right)}}{\sin{\left(\frac{x - 4}{x} \right)}}$$
The second derivative [src]
              /                  /-4 + x\      2/-4 + x\ /    -4 + x\\ 
              |             2*cos|------|   cos |------|*|1 - ------|| 
 /    -4 + x\ |    -4 + x        \  x   /       \  x   / \      x   /| 
-|1 - ------|*|1 - ------ + ------------- + -------------------------| 
 \      x   / |      x          /-4 + x\              2/-4 + x\      | 
              |              sin|------|           sin |------|      | 
              \                 \  x   /               \  x   /      / 
-----------------------------------------------------------------------
                                    2                                  
                                   x                                   
$$- \frac{\left(1 - \frac{x - 4}{x}\right) \left(\frac{\left(1 - \frac{x - 4}{x}\right) \cos^{2}{\left(\frac{x - 4}{x} \right)}}{\sin^{2}{\left(\frac{x - 4}{x} \right)}} + 1 + \frac{2 \cos{\left(\frac{x - 4}{x} \right)}}{\sin{\left(\frac{x - 4}{x} \right)}} - \frac{x - 4}{x}\right)}{x^{2}}$$
The third derivative [src]
               /                                             2                            2                                          \
               |                      /-4 + x\   /    -4 + x\     3/-4 + x\   /    -4 + x\     /-4 + x\        2/-4 + x\ /    -4 + x\|
               |                 3*cos|------|   |1 - ------| *cos |------|   |1 - ------| *cos|------|   3*cos |------|*|1 - ------||
  /    -4 + x\ |    3*(-4 + x)        \  x   /   \      x   /      \  x   /   \      x   /     \  x   /         \  x   / \      x   /|
2*|1 - ------|*|3 - ---------- + ------------- + -------------------------- + ------------------------- + ---------------------------|
  \      x   / |        x            /-4 + x\              3/-4 + x\                    /-4 + x\                     2/-4 + x\       |
               |                  sin|------|           sin |------|                 sin|------|                  sin |------|       |
               \                     \  x   /               \  x   /                    \  x   /                      \  x   /       /
--------------------------------------------------------------------------------------------------------------------------------------
                                                                   3                                                                  
                                                                  x                                                                   
$$\frac{2 \left(1 - \frac{x - 4}{x}\right) \left(\frac{\left(1 - \frac{x - 4}{x}\right)^{2} \cos{\left(\frac{x - 4}{x} \right)}}{\sin{\left(\frac{x - 4}{x} \right)}} + \frac{\left(1 - \frac{x - 4}{x}\right)^{2} \cos^{3}{\left(\frac{x - 4}{x} \right)}}{\sin^{3}{\left(\frac{x - 4}{x} \right)}} + \frac{3 \left(1 - \frac{x - 4}{x}\right) \cos^{2}{\left(\frac{x - 4}{x} \right)}}{\sin^{2}{\left(\frac{x - 4}{x} \right)}} + 3 + \frac{3 \cos{\left(\frac{x - 4}{x} \right)}}{\sin{\left(\frac{x - 4}{x} \right)}} - \frac{3 \left(x - 4\right)}{x}\right)}{x^{3}}$$