/ /x - 4\\ log|sin|-----|| \ \ x //
log(sin((x - 4)/x))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
To find :
Apply the power rule: goes to
Now plug in to the quotient rule:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
/1 x - 4\ /x - 4\
|- - -----|*cos|-----|
|x 2 | \ x /
\ x /
----------------------
/x - 4\
sin|-----|
\ x /
/ /-4 + x\ 2/-4 + x\ / -4 + x\\
| 2*cos|------| cos |------|*|1 - ------||
/ -4 + x\ | -4 + x \ x / \ x / \ x /|
-|1 - ------|*|1 - ------ + ------------- + -------------------------|
\ x / | x /-4 + x\ 2/-4 + x\ |
| sin|------| sin |------| |
\ \ x / \ x / /
-----------------------------------------------------------------------
2
x
/ 2 2 \
| /-4 + x\ / -4 + x\ 3/-4 + x\ / -4 + x\ /-4 + x\ 2/-4 + x\ / -4 + x\|
| 3*cos|------| |1 - ------| *cos |------| |1 - ------| *cos|------| 3*cos |------|*|1 - ------||
/ -4 + x\ | 3*(-4 + x) \ x / \ x / \ x / \ x / \ x / \ x / \ x /|
2*|1 - ------|*|3 - ---------- + ------------- + -------------------------- + ------------------------- + ---------------------------|
\ x / | x /-4 + x\ 3/-4 + x\ /-4 + x\ 2/-4 + x\ |
| sin|------| sin |------| sin|------| sin |------| |
\ \ x / \ x / \ x / \ x / /
--------------------------------------------------------------------------------------------------------------------------------------
3
x