log(sin(x) - cos(x))
log(sin(x) - cos(x))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of sine is cosine:
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of cosine is negative sine:
So, the result is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
cos(x) + sin(x) --------------- sin(x) - cos(x)
/ 2\ | (cos(x) + sin(x)) | -|1 + -------------------| | 2| \ (-cos(x) + sin(x)) /
/ 2\ | (cos(x) + sin(x)) | 2*|1 + -------------------|*(cos(x) + sin(x)) | 2| \ (-cos(x) + sin(x)) / --------------------------------------------- -cos(x) + sin(x)
/ 2\ | (cos(x) + sin(x)) | 2*|1 + -------------------|*(cos(x) + sin(x)) | 2| \ (-cos(x) + sin(x)) / --------------------------------------------- -cos(x) + sin(x)