Mister Exam

Derivative of ln(sinx-cosx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(sin(x) - cos(x))
$$\log{\left(\sin{\left(x \right)} - \cos{\left(x \right)} \right)}$$
log(sin(x) - cos(x))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of sine is cosine:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of cosine is negative sine:

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
cos(x) + sin(x)
---------------
sin(x) - cos(x)
$$\frac{\sin{\left(x \right)} + \cos{\left(x \right)}}{\sin{\left(x \right)} - \cos{\left(x \right)}}$$
The second derivative [src]
 /                      2\
 |     (cos(x) + sin(x)) |
-|1 + -------------------|
 |                      2|
 \    (-cos(x) + sin(x)) /
$$- (1 + \frac{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2}}{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)^{2}})$$
3-я производная [src]
  /                      2\                  
  |     (cos(x) + sin(x)) |                  
2*|1 + -------------------|*(cos(x) + sin(x))
  |                      2|                  
  \    (-cos(x) + sin(x)) /                  
---------------------------------------------
               -cos(x) + sin(x)              
$$\frac{2 \left(1 + \frac{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2}}{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)^{2}}\right) \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)}{\sin{\left(x \right)} - \cos{\left(x \right)}}$$
The third derivative [src]
  /                      2\                  
  |     (cos(x) + sin(x)) |                  
2*|1 + -------------------|*(cos(x) + sin(x))
  |                      2|                  
  \    (-cos(x) + sin(x)) /                  
---------------------------------------------
               -cos(x) + sin(x)              
$$\frac{2 \left(1 + \frac{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2}}{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)^{2}}\right) \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)}{\sin{\left(x \right)} - \cos{\left(x \right)}}$$